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Abstract

Kloosterman sums are special exponential sums which appear in many problems in number theory. Klooster-
man first introduced these sums in [1] to investigate whether the quadratic form a;n? + aan3 + azn + asn?
with fixed a; € N represents all sufficiently large natural numbers. Another application is to estimate the

shifted sum of divisor functions. Let 7(n) be the number of divisors of the positive integer n and
N
D(N, f) = Z T(n)r(n+ h), for some fixed integer h > 1.
n=1

Heath-Brown [2] applied the Weil bound (1.1) of Kloosterman sums to prove that
D(N, f) = explicit main terms + O(N¢¢), uniformly for 1 < h < N&.

Using Kuznetsov’s trace formula, Deshouillers and Iwaniec [3] obtained a much better error bound O(N te)
for all A > 1.

The integer partition function p(n), which is the number of ways to write n as a sum of positive integers,
has been researched for remarkable properties by Euler, Hardy and Ramanujan [4]. Rademacher’s exact
formula [5] states that p(n) can be written as a sum of exponential sums. The generating function of p(n)

27z and Imz > 0. Since 7(z) is a weight %

is q21 /n(z), where 7(z) is Dedekind’s eta function with ¢ = e
modular form, using the definition of multiplier systems, we are able to rewrite the exponential sums in
Rademacher’s exact formula as generalized Kloosterman sums. The bounds on Kloosterman sums give the
growth rate of errors for such approximations.

There are very famous congruence properties of the partition function p(n) by Ramanujan:
p(bn+4) =0 (mod 5), p("Tn+5)=0 (mod 7), p(lln+6)=0 (mod 11).

In 1944, Dyson [6] defined the rank of a partition of n. If we let N(a,b;n) denote the number of partitions
of n with rank congruent to a (mod b), then Dyson conjectured that 5N(j,5;5n + 4) = p(5n + 4) and
TN(j,7;7n+5) = p(Tn+5) for all j. By the work of Bringmann and Ono [7], [8], the generating functions for
the ranks of partitions have similar properties as qﬁ /n(z). The work of Bringmann and Ono in the theory of
harmonic Maass forms discovers beautiful properties about the rank of partitions. For example, in [7] they
proved the exact formula for the modulo 2 case, which perfected the asymptotics by Ramanujan, Dragonette
[9] and Andrews [10].

If we have better estimates for the sums of half-integral weight Kloosterman sums, we are able to obtain
better tail bounds for the Rademacher-type exact formulas, which control the efficiency of their convergence.
The recent work by Ahlgren and Andersen [11], Ahlgren and Dunn [12], and Andersen and Wu [13] provide
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improved error bounds based on their improvement on the estimates for Kloosterman sums.

The author [14], [15] generalized their work to the Kloosterman sums with a wider class of multiplier
systems, which are half-integral weight and include the commonly used theta- and eta-multipliers twisted
by quadratic characters. The resulting estimates give a uniform version of the general result by Goldfeld
and Sarnak [16] for sums of such Kloosterman sums with a power-saving bound in the parameters m and n.
Following the method in [7], the author provided a detailed proof of the exact formula for the rank modulo 3
case in [14].

Then what about the exact formulae in the rank modulo 5 and 7 cases, where Ramanujan’s congruences
appear? Bringmann [17] proved the general asymptotics for all odd moduli, while the Kloosterman type
sums are hard to interpret as Kloosterman sums. Thanks to the theory of vector-valued Maass forms from [§]
and the explicit transformation laws by Garvan [18], the author finds the interpretation as vector-valued
Kloosterman sums. Combining with some generalization of [16], the author finally provides the proof for the
exact formula of rank modulo primes p > 5. The author also has a striking observation between the interesting
cases p = 5,7, where the Kloosterman sums become identically zero (or become equal for those defined on
different cusp pairs). After a long study of the cases depending on congruence properties of the Dedekind
sums, the author proves this cancellation property and provides a new proof for the Dyson’s conjecture
5N (a,5;5n 4+ 4) = p(5n+4) and 7N(a,7;7n + 5) = p(Tn + 5) which implies Ramanujan’s congruences.
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Chapter 1

Introduction

In this thesis, we collect the author’s results on estimates for sums of Kloosterman sums and their applications
to the theory of integer partitions. These estimations generalize the work of Goldfeld and Sarnak [16], Sarnak
and Tsimerman [19], as well as the work of Ahlgren, Andersen and Dunn [11], [12], [20]. Thanks to the
theory for ranks of integer partitions developed by Bringmann, Ono and Garvan [7], [8], [17], [18], [21], the
author is able to apply the certain estimates, especially the uniform bounds for sums of Kloosterman sums,
to generalize Rademacher’s exact formula for ranks of partitions modulo primes.

The first paper [14] for the mixed-sign case of Theorem 1.7 has been published in Forum Mathematicum
and we record the proof mainly in Chapter 4. The second one for the same-sign case of Theorem 1.7
was submitted for publication and we record the proof in Chapter 5. The author’s work on the proof of
Theorem 1.14 and Theorem 1.15 has not been submitted yet, but we record these results in Chapter 7 and
Chapter 8 in this thesis.

1.1 Standard Kloosterman sums

For a positive integer ¢, the standard Kloosterman sum

d . _
S(m,n,c) = Z e (m—cknd) . e(2):=e*™*  dd=1 (mod c)
d (mod c¢)*

has a trivial bound ¢ and a well-known Weil bound
|S(m,n, ¢)| < oo(c)(m,n, e)7c?, (1.1)

where o, (¢) = dle d" is the divisor function. The Weil bound implies a square-root cancellation for estimating
S
E S(m.n,c) < og((m, n))xélogas. (1.2)
c
c<lz

In the 1960s, Linnik [22] and Selberg [23] pointed out the connection between such sums and modular forms.

They conjectured that there should be a full cancellation, which was reformulated by Sarnak and Tsimerman



in [19] as
S
3 w < |mnzlF.

c<z

Kuznetsov [24] applied his famous trace formula which resulted in the bound

S !
Z S(mn,c) Lm,n 28 (log m)%.
c<zx ¢
Sarnak and Tsimerman [19] obtained a bound which is uniform in m and n for mn > 0:
S(m7 n, C) 1 1 1 9 e
Z — < (1‘6 + (mn)s + (m +n)3 (mn)?) (mnz)®, (1.3)

c<z

where 6 is an admissible exponent towards the Ramanujan-Petersson conjecture for GLs /Q. One may take
0 = & by the work of Kim and Sarnak [25].

1.2 Multiplier systems and general Kloosterman sums

Denote the modular group SLa(Z) := {y € Ma(Z) : dety = 1}, where My(Z) is the set of 2 by 2 matrices
with integer entries. Each v = (’é Z) € SLy(Z) acts on the upper-half complex plane

H:={z€C: z=z+1iy, z,yeR, y=Imz>0}

as a Mobilis transformation z — vz := Zjis This operation satisfies v1(v22) = (7172)2. When ¢ # 0, this

definition can be extended to HU {00} U Q by defining

—dy _ _a,
v(=*) =00 and voo—g,

when ¢ = 0, we define yoo = oo.

For any subgroup T" of SLs(Z) of finite index, the quotient topological space I" \ H is a Hausdorff space.
After adding the set of points Q U {oo}, ' \ H is compactified. We define the cusps of I' \ H, or simply
the cusps of ', as the equivalence classes of Q U {oo} under the action of I'. There are several important

subgroups of SLy(Z): let N > 1 be an integer, we define

To(N) = { (“ Z) € SLy(Z) : ¢=0 (mod N)} : (1.4)

c

I1(N) = {(“ Z) € SLa(Z) : a,d=1 (mod N), ¢ =0 (mod N)}, (1.5)

c

I(N) = { (“ Z) € SLy(Z) : a,d=1 (mod N), b,c =0 (mod N)} . (1.6)

c
Fixing the argument (—m, ], for any v € SLa(R) and z = x + iy € H, we define the automorphic factor

cz+d _ ei arg(cz+d) (17)

J(v,2) = lez +d|



and the weight k slash operator
(Flsm)(z) = (7, 2) " f(v2) (1.8)

for k € R.

Definition 1.1. We say that v : T — C* is a multiplier system of weight k if
(1) [v| =1,
(ii) v(—1I) = e ™* and

(i1i) v(y1v2) = wi(y1,72)v(71)v(y2) for all v1,v2 € T, where

wi(v1,72) = § (72, 2) %5 (71, 722) ¥ (7172, 2) F.

If v is a multiplier system of weight k, then it is also a multiplier system of weight k' for any k¥ = k

(mod 2), and its conjugate 7 is a multiplier system of weight —k. One can check the basic properties that

vy =1, v(r(§ ) =vnr((§1)" (1.9)

For any cusp a of a congruence subgroup I' < SLy(Z) where (1) € T, let I’y denote its stabilizer in T".
For example, I'so = {£(§ %) : b € Z}. Let 04 € SLy(R) denote a scaling matrix of a, which means o, satisfies

ogoo=a and o, 'Taoq =T0. (1.10)
We define a4 € [0,1) by the condition
v(oa(§1)oa’) = e(—aua)- (1.11)

The cusp a is called singular if o, o = 0. When a = co we drop the subscript and denote «, := a,, . For
n € Z, define ng :=n —a, q and neg =N 1=n — ay,.

The Kloosterman sums for the cusp pair (0o, 00) with respect to v are given by

S(m,n,e,v) =Y V('y)@(W)z > V('y)e(ﬁwz_ﬁCi). (1.12)

0<a,d<c V€L \I'/To
SEHE: e

They satisfy the relationships

- S(1—m,1—n,c,v if a, > 0,
S(m,n,c,v) = (1=m mer)  ifa (1.13)
S(—m,—n,c, D) if a, =0,
because
—(1— if a, ,
o — (I1-n), ifa,>0 (1.14)
n if a, = 0.

There are two fundamental multiplier systems of weight % The theta-multiplier vy on I'g(4) is given by

0(vz) =vo(v)Vez +d0(z), v=(2%) €To(4) (1.15)



where

H(Z) = Z 6(77,22), VG(’V) = (2) 5;1, Eq = { 1 jE ;) (I'IlOd 4)7

nez

and () is the extended Kronecker symbol. The eta-multiplier v, on SLy(Z) is given by
02) = vy(WVer Fdn(z), 7= (24) € SLa(Z) (1.16)

where

[Ta-a", g=e(2). (1.17)

n=1

n(z) = g2

Let ((z)) := 2 — |z] — 5 when € R\ Z and ((z)) := 0 when z € Z. We have the explicit formula [26, (74.11),

(74.12)]
T e (5 o £ @) o

r (mod c)

for all c € Z\ {0} and v, (($ ) = e (&). Another formula [27] for ¢ > 0 is

,)e i (a—|—d)c—bd(62—1)—3c)} if ¢ is odd,

)eqss((atd)e—bd(c —1)+3d—3—3cd)} if ¢ is even.

The properties vy, (—7) = iv,(7) when ¢ > 0 and e(15%) = (2)eq for odd d are convenient.

1.3 Estimates for sums of Kloosterman sums

There is a famous result by Goldfeld and Sarnak [16] estimating the sums of general Kloosterman sums. Let
I be a congruence subgroup of SLo(Z) with (§ }) € I'. Let k € R and v be a weight k& multiplier system on I'.

Define
log [S(m,n,c,v)|

g := lim sup (1.20)
c— 00 log &
For m,n € Z, we define the Kloosterman-Selberg zeta function as
= S(m,n,c,v)
Zmmw(s) 1= Z — . (1.21)

C
c=1

By the definition of 8, one can see that Z,, ,, ,(-) is defined and holomorphic on Re s > % Goldfeld and

Sarnak proved the following theorem.

Theorem 1.2 ([16, Theorem 1]). The function Zp, n,.(s) is meromorphic in Res > 1 with at most a finite

number of simple poles in (%, 1).
Based on the growth condition of Z,, ,, ,,(s), Goldfeld and Sarnak obtained the following estimate:
Theorem 1.3 ([16, Theorem 2]). For any e > 0,

S(m,n,c,v T
DRI R, ANk

s;i—1
c<z s;€(%,1)

23]’71

Lylvy

B

7+E
+ Om,n k,T,ve (17 3 ) .
J



Here the sum runs over the simple poles of Zy, ., (s) in (3,1) and 7;(m,n) depends on m,n,v, and T

We will show the formula for 7;(m, n) in Theorem 1.7 but not repeat it here. The above bound does not
show the dependence on m and n, while the methods in [16] guaranteed a polynomial growth for them. We
will leave this discussion until Chapter 3. The uniform bounds for sums of general Kloosterman sums, like

(1.3), has been obtained by Ahlgren and Andersen in special cases:

Theorem 1.4 ([11, Theorem 1.3, Theorem 9.1]). For m > 0 and n < 0 we have

Z S(’ITL,TL,C,I/n)

1 1
<e (1’5 + |mn|1> |mn|®log .
c

clz

Moreover, forn <0 and 0 < § < é, we have

S ST o e x iy (e 4 X5 og X,
Cc

c<X

Let ¢ be the conjugate of the weight 2 multiplier system of 7(z)°/n(2z)? on T'g(2) (hence ¢ is a weight 3
multiplier system on I'g(2)), then ¢ is exactly the multiplier system defined at [12, (3.4)]. Ahlgren and Dunn

proved:

Theorem 1.5 ([12, Theorem 7.1]). Suppose that 24n — 1 is positive and squarefree and that 0 < & < % For
X >1 and € > 0 we have

Z S(0,n,c, 1) s.e ‘n|%+sX%6+ (|n|%+s+xé—6) Xe€
C

2|c<z

The author is able to generalize these results to a wide class of half-integral weight multiplier systems.
Besides the uniform bound, the author also recovers the 7; terms in Goldfeld and Sarnak’s result (Theorem 1.3)

via the trace formula, which is a different method from the original paper.

Definition 1.6 (Definition 1.1 in [14], [15]). Let (k,v") = (3, (@)1/9) or (—3, (@)79) where D is some even

fundamental discriminant and vy is the multiplier for the theta function. We say that a weight k multiplier v

on I' =T¢(N) is admissible if it satisfies the following two conditions:
(1) Level lifting: there exist positive integers B and M such that the map £ : (ZLf)(z) = f(Bz) gives:

(i) an injection from weight k automorphic eigenforms of the hyperbolic Laplacian Ay on (I'g(N),v)
to those on (I'g(M),v") and keeps the eigenvalue;

(i) an injection from weight k holomorphic cusp forms on (Io(N),v) to weight k holomorphic cusp
forms on (To(M), V).

Here M is a multiple of 4 and M depends on B.

(2) Average Weil bound: for x >y >0 and x —y > z3, we have

s Bemnenl o (E - il

Nlc€ly,z]



Remark. The exponent % =1 — 0 comes from a parameter § in the proof which is finally chosen to be % An
individual Weil-type bound on S(m,n,c,v) can imply the average bound specified in condition (2), but our

result only needs this weaker requirement.

The author proved the following theorem in two papers and states the results together here. The difference
is that [14] is for the case mn < 0 while [15] is for the case mn > 0. Although the two cases and conclusions

look similar, there are significant differences in the proofs.

Theorem 1.7 ([14, Theorem 1.4], [15, Theorem 1.3]). Suppose mit # 0 and v is a weight k = +1 admissible
multiplier on To(N). We have

S(m,n,c,v) X2s;—1 N o
Z f - Tj (m7n) 28]' 1 + OV,S ((Au(m, n) + Xﬁ) (mnX) ) s (122)
Nle<X s;€(%,2)

where for B and M in Definition 1.6, we factor Bl = teuiw? with ty square-free, ug| M positive and
(we, M) =1 for £ € {m,n}. Here 7j(m,n) are the coefficients in [16] (as corrected by [28, Proposition 7]):

STy Coe o1 D(sj+sgni- E)0(2s; — 1)
T(m,n) = 2@kpj(m)pj(n)7r1 2 J(4mn)1 i J 2 J

F(Sj — %) ’
and
131 3 131 H 3
Ay(myn) = (ﬁzm + um) (ﬁm + un) (mn)is
_ | l43 143 3 1 3 143 1 -\ 3 1
< (mn) 588 4 M Bss 16 S + misnsss S, + (mn) 16 (umun)s .

As a corollary or a simpler version of the above theorem, we have

Corollary 1.8. With the same setting and notations as Theorem 1.7, we suppose Bl is square-free or coprime
to N for ¢ € {m,n}, then

S , , X2sj71 .
S AEY) S )+ O (i 4 xE) X ) (1.23)
Nje=X ¢ 51€(3,3 KA
Remark. We have the following notes for the theorem and corollary above:
e The notation u|M> means u|M for some positive integer C.

e When u,, and w, are both Oy , (1), we have A, (m,n) <y, |iuii| 556 .

[ )
Al

In general, A,(m,n) Ky, (Mn)7.

e The theorem also applies to the case m < 0 and 7 < 0 because of (1.13) by conjugation.
e When r; = i', we have 7;(m,n) = 0 unless sgnm, sgnn, and sgnk are all the same (see (2.13) and
(2.14)).

We modify our estimate to get the following bound suitable for the applications in Chapter 6. Recall that
a, €[0,1) is defined as v((§ 1)) = e(—ay).



Theorem 1.9 ([14, Theorem 1.6], [15, Theorem 1.5]). With the same setting as Theorem 1.7, we suppose
Bl is square-free or coprime to N for { € {m,n}. Then for 8 = % or % and a > 0, when 7;(m,n) =0 for

3
rj = 7, we have

Z S(m,n,c, V)//lg (47" |mn|) Lame [ (1.24)
C C
Nie>ay/[mn|

where Mg is the Bessel function Ig or Jga.

Remark. We prove Theorem 1.9 in the end of Chapter 5. The best bound, in the particular case S(1,n, ¢, )
with the eta-multiplier, was recently given by Andersen and Wu [13, (2.10)]: for n > 0,

1,1 —
3 w < (ot + 1P wd) (na)? (1.25)
c<lz

where d and w are given by 1 — 24n =: dw? such that d = 1 (mod 24) is a negative fundamental discriminant.
They proved this stronger bound by applying a hybrid subconvexity bound of twisted L-functions which

generalizes Young’s result in [29].

1.4 Ranks of partitions and Rademacher-type exact formulas

From now on, we denote p(n) as the partition function, which is the number of ways to write the natural
number n as a sum of a non-increasing sequence of positive integers. For example, we have p(3) =3 (3, 2+ 1
and 1+1+1),p(4)=5(4,34+1,2+2,2+1+1and 14+1+1+1), and p(100) = 190569292. In 1918,
Hardy and Ramanujan [4] proved the asymptotics for p(n):

()~ — 2—”
p(n 4n\/gexp ™ 3]

Later, in 1938, Rademacher [5] proved the exact formula of p(n). If we define

Ac(n) = % % Z x12(z)e (%) , (1.26)

z (mod 24c)
z2=—24n+1 (mod 24c)

where Y12 is the Dirichlet character (12) modulo 12, e(z) := €>™#, and the sum runs over the residue classes

modulo 24¢, then Rademacher’s exact formula [5, (1.8)] can be written as [11, (1.2), (1.3)]

PR Y )

1
n— 5z

(477\/;?2:71 > (1.27)

1

wlw

<4w¢m>.

24c¢



Ramanujan also obtained the famous congruence properties of p(n):
p(dbn+4) =0 (mod 5), p("Tn+5)=0 (mod 7), p(lln+6)=0 (mod 11). (1.28)

In 1944, Dyson [6] defined the rank of a partition to strikingly interpret the above congruences. Suppose
A={A1 > Ay >--- > A.} is a partition of n, i.e. Z;”:l Aj =n. Let

rank(A) :== A; — &
define the rank of this partition, and let the quantities N(m,n) and N(a,b;n) be defined by
N(m,n) := #{A is a partition of n : rank A = m} (1.29)

and
N(a,b;n) := #{A is a partition of n : rank A = a (mod b)}. (1.30)

Let ¢ = exp(2miz) = e(z) for z € H (the upper-half complex plane) and w be a root of unity. It is well known
(e.g. [8, (1.4)]) that the generating function of N(m,n) can be written as

o0 o0 o0
:1—|—Z Z N(m,n)wmqnzl—i—z : 4

1 m=—o0 n=1

(1.31)

where (a;q)n = []jZ (1 —ag’). For example, R(1;q) = 1+ 3°° p(n)q" is the generating function for
partitions. For integers b > a > 0, denote A(%;n) as the Fourier coefficient of R((j'; q):

R((Eq) = 1+ZA( )

where (, = exp( %) is a b-th root of unity. The following identity is easy to get but helpful in understanding
the relation between A(%;n) and N(a,b;n):

bN (a, b; n) +Zgb ‘”A( ) (1.32)

It is not hard to show that A(%;n) € Rfor1 < j < b—1Dbecause N(a,b;n) = N(b—a,b;n), A(%; n) = A(%L;n)
and ¢, + ¢, ") e R.

The function R(wj;q) has many beautiful connections and properties. When w = —1, it is known that
N(0,2;n) — N(1,2;n) = A(3;n) is the Fourier coefficient of Ramanujan’s third order mock theta function
f(q). We know that the Hardy-Ramanujan asymptotic

1 wﬁ
n) ~ e"Vs
p(n) 3

was perfected by Rademacher’s exact formula (1.27). Similarly, Dragonette [9] and Andrews [10] improved

the asymptotic formula of A(%; n) which was conjectured by Ramanujan. The exact formula for A(%; n) was

later proven by Bringmann and Ono:



Theorem 1.10 ([7, Theorem 1.1]). The Andrews-Dragonette conjecture is true:

1k
JAQ (n— k(A+(=1) ))

1 > —_—
Al =:n - 4 I
(2 ) 2471711Z k

k=1

(1)

" (1.33)

[N

Remark. Recall the weight 3 multiplier ¢ on I'g(2) defined before Theorem 1.5 (see [12, (3.4), Lemma 3.2]).
By [12, (3.5)] and [12, Lemma 3.1], we have

i (n - LEEND) 500,203

(-pl=

so we can rewrite the exact formula (1.33) of A(3;n) as

A (1. > _ (2W6(_§) > S(O’"C’C’lp)n (”\/W). (1.34)

2"") " (2an— 1)t 6e

2
2[c>0

The author [14] provided a detailed proof of A(%;n) = A(2;n), which is the Fourier coefficient of
R(Gs;9) = R(C359)-

Theorem 1.11 ([14, Theorem 2.2]). We have

()0 (3) -k o

1
3|c>0

%, (~25T)

. (1.35)

N

Let R;j(n,z) be the tail sum on n > z of the above exact formulas for A(%;n): j=1for (1.27), j = 2 for
(1.33) (see (1.34)) and j = 3 for (1.35). For example,

o) 2me(—3) 5(0,n,¢, (3)7) ) mv/24n — 1
Ba(n, 7) (24n — 1) 3|z>:m c Iz( 6c ) (1.36)

Each multiplier system v in these sums satisfies a,, = L4 or = Wlth B = 24 and M|576 in Definition 1.6.

2

Clearly both 24n — 1 and 24n — 23 are always coprime with M. The admissibility of each multiplier is proved

n [11], [12] and Proposition 4.1, respectively. Now we can apply Theorem 1.9 to get a power-saving with
143 _

exponent 1~ 538 = 117 47 less:

Theorem 1.12. For o > 0 we have

nTrmEte =1,
Ri(n,av/n) < ’
smaVn) oe (omre Goa
Remark. The previous results on the growth rates for R;(n,ay/n) are n=2%e for j=1and n® for j = 2,3.
These results come from careful applications of the circle method. We will discuss these milestones in
Chapter 6.

When j = 1,2, this improves [12, Theorem 1.4, Theorem 1.1] by removing the square-free requirement.
Recently Andersen and Wu [13, Theorem 1.1] proved a stronger bound when j = 1 based on their estimate
(1.25):

Ri(n,av/n) <. -3t



Another new contribution in this thesis is to extend to the case j = 3.
In 2009, Bringmann [17] used the circle method to find the asymptotics of A(%;n) for general odd u.
Let s(d, c) be the Dedekind sum defined in (1.18) and wg,. := exp(wis(d, c)). When (d, ¢) = 1, define d by

dd!, = —1 (mod ¢) if ¢ is odd and dd, = —1 (mod 2¢) if ¢ is even. Denote
9(h) = —7
™ ged(g )

for non-zero integers g and h. If ule, define

. sin(Z) wy,c md., + nd
Biu.o(n,m) = (1)t — S < ~ > ) (1.37)
d (mod c)* sin( o )eXp(T)
When u {a and 1 < /£ < ug), let 0 < [ag,)f] < uq) be defined by [a(,)f] = a,)f (mod u(,). Define
/
Dé,u,a(nvm) = (_1)al+[a(u)l] Z Wh,a€ <7nba+nb> . (138)
b (mod a)* a
When u 1 a, define
1 [a‘(u)‘e] 3 [a(u)f] 2 1 fO [a(u)f] 1
—(a 4150 +§(u<a>) +on S TN
- 2
Stmar 1=y oty g (o)’ g ot e a ] (1.39)
0 otherwise,
and when 0 < [‘L(“))a < % or g < [a(“)é] < 1, define
My w,a,r *=
L (=3 (a@nl — [awn ) — gy (1 +2r) (aml — [agm? 0 [%)ﬂ 1
207 ( (a(u) [a(u) ]) Uy (1427 (a(u) [a ) ]) , 0 <=0 <5 (1.40)
2 . au)l
2“1?(1) < -3 (a(u)f — [a(u)ﬁ]) + U(a)(QT‘ — 5) (a(u)f — [a(u)ﬁ]) + 2“%(1) (7« _ 1))7 if % [u(( ))] <1.

By [17, bottom of p. 3485], or directly by w4

Bringmann proved:

(a(u)ﬁ — [a(u)ﬁ]), We can see Mgy q,r € Z always.

Theorem 1.13 ([17, Theorem 1.1]). If1 < ¢ < u are coprime integers and u is odd, then for positive integers

n we have

(E ) 4\/§i Byu.c(—n,0) . <m/24n - 1)
Al —;n Z — sinh
V24n — i Ve 6¢

8 - 200 war(2dn — 1 1.41
\[Sln Z Z Dé,u,a( n, mé,u,aﬂ‘) sinh 7T\/ lu,a, ( n ) +Ou E(ng). ( )
V24n —1 Va av3 '

r>0 a<y/n:
uta,
0¢,u,a,r>0

Note that the sum of r > 0 in the second line is a finite sum because when v is fixed and r is large enough,

0¢,v,a,r Will be always negative. Here we have modified the notation in Bringmann’s paper for convenience in

10



this thesis. Bringmann and Ono [21] claimed that the above sum, when summing up to infinity, should be
the exact formula for A(£;n).

When u = p is a prime number, the author proves that their statement is true. We also explain By, .(—n,0)
and Dy p o(—n, My p.a,r) as components of vector-valued Kloosterman sums. Note that when u = p, we have
Cp) = 3> A(p) = @ and p(q) = p for pc and p { a, hence the formulas from (1.37) to (1.40) become simpler.

Let pp @ To(p) — GLp—1(C) be defined as in (2.11), Sccso(m,n, ¢, ptp) and Sooo (Xy,m, a, pip;r) (for
r > 0) be the vector-valued Kloosterman sum defined in (2.43) and (2.48), with Sé?oo(m,n,c, Kp) and
SSQD (XSW]), n,a, pp; ) as the scalar values at their ¢-th entry, respectively. Let x, be the only root in (0, %)

of the quadratic equation

1 1
22 (= — =0. 1.42
5% <2 + ’I“> x + o 0 (1.42)

In the case of prime p, we define [af] by 0 < [af] < p and [af] = af (mod p). Then we have the following

theorem.

Theorem 1.14 ([30, Theorem 1.1]). For every prime p > 5, integer 1 < £ < p — 1 and positive integer n,
with the Kloosterman sums defined in (2.44) and (2.49), we have

2me(—1) sin(Z£ ) —
A(g; )Z me(—g)sin(%) 3 SOOOO(O,n,C,up)I% <4m/24n 1>

" 1 24
p (247’Z - 1)4 c>0:ple ¢ ¢

Am Sln(ﬂl) Z Z S(()cl;)o ([_pdl,p,a,r“ 5 Ty Gy [ T) I Am V 5£,p,a,r(n B i) (143)

a

[N

1
T2
0 [aTO:Ma, a- 6l,p,a,r
<p la4
P sleen)
or %G(l—mr,l)

where [x] is the smallest integer > x and |x] is the largest integer < x.

Remark. This theorem also proves that Bringmann’s formula (1.41), when summing up ¢ and a to infinity, is
the exact formula. Indeed, for all prime p > 5,1 < £ <p—1,r > 0, positive integers a, ¢ such that p|c and

p1a, and when ¢ 4, > 0, we have the following relations:

i Brpe(—n,0) = e(—3§) sin(Z£)SE (0, n, ¢, ), (1.44)
Dipar (=1 mepiar) = Soo ([=POtp.an] 100, i3 7) (1.45)
I (z) = (%)% sinh(z) (see [31, (10.39.1)]), and (1.46)

S¢par >0 ifand only if 24 e (0,2,)U (1 -z, 1). (1.47)

p

The last relation (1.47) is clear from the definition. Since A(%; n), 0¢p.a.r and I1(y) (for y € R) are all real
(see (1.32) for A), we are safe to take the complex conjugation of (1.41).

We will prove (1.44) and (1.45) in §7.2.

By proving specific vanishing properties of the Kloosterman sums above, we are able to prove the
equidistribution of A(ﬁ; n) related to the rank of partitions. These properties also provide a new proof of

Ramanujan’s congruences (1.28) for the 5n + 4 and 7n + 5 cases as described by Dyson.

Theorem 1.15 ([30, Theorem 1.2]). For all integers n >0 and 1 < £ <p—1 for p=>5,7 (mentioned by p|c

below), we have the following vanishing conditions for the Kloosterman sums appearing in Theorem 1.1:

11



(1) If 5|c, we have Séi)oo(o,fm +4,¢,u5) =0.
(2) If 7lc, £-£# 1 (mod 7), and £ - £ # —1 (mod 7), then S((,f;)oo((),7n+5,c, u7;0) = 0.

(3) If 7|c, Tt a, al = £1 (mod 7), and c = Ta, we have §p7.40 = (7> x 24)7Y, [T 7.40] =0, and

S(gfn)oc 077 57 2
(0, 7n + c,,u7)_’_775(()2(0,771—%-5,@,/17;0):0.

e(~1) c 7

ool

Remark. The second sum for ¢ on r > 0 in (1.41) and (1.43) only appears when p > 7. When p = 7, only

1 [al] 6

r =0 is allowed and zp = §, so 5~ can only take values % or 2, which requires af = £1 (mod 7).

¢
7
Corollary 1.16 ([30, Corollary 1.3]). Formn >0 and all ¢, A(§;5n+ 4) = A(%;?n +5)=0.

Combined with (1.32), the above corollary proves the equidistribution properties, i.e. Dyson’s conjectures
of the rank of partitions: 5N (£,5;5n +4) = p(bn +4) and TN (¢, 7;7n + 5) = p(Tn + 5) for all £, which imply
Ramanujan’s congruences p(5n 4+ 4) = 0 (mod 5) and p(7n + 5) =0 (mod 7).

1.5 Structure of the thesis

The main subject of this thesis is to organize the author’s proofs of Theorem 1.7, Theorem 1.9, Theorem 1.14
and Theorem 1.15 as his contribution during the doctoral years. We will introduce the basic definitions of
various automorphic forms in Chapter 2. Before we go into the ideas of Theorem 1.7, we first introduce Goldfeld
and Sarnak’s important work [16] in Chapter 3, including generalizations to vector-valued Kloosterman sums
as a help to the proof of Theorem 1.14.

Chapter 4 and Chapter 5 record the author’s proof of Theorem 1.7. Although the statement of Theorem 1.7
is the same in the cases mn < 0 or mn > 0, the methods we use are quite different, as can be seen by
comparing Theorem 4.8 and Theorem 5.1. Since Theorem 1.9 is a corollary of Theorem 1.7, Chapter 6
contains the proof of Theorem 1.9, as well as a literature review section in order to describe the milestones
on this route.

Chapter 7 is devoted to prove Theorem 1.14. To prove the vanishing properties of certain Kloosterman
sums in Theorem 1.15 and hence the equidistribution properties of A( ﬁ; n), Chapter 8 includes many tables

to enumerate all the conditions.

12



Chapter 2

Automorphic forms and Kloosterman

SUIs

This chapter includes definitions and basic theorems in the theory of holomorphic modular forms, Maass

forms and harmonic Maass forms. We focus on the half-integral weight k € Z + % unless specified.

2.1 Holomorphic modular forms

For any v € SLy(R) and z = = + iy € H, we have the basic properties

Im=z a 1
I — d - —_——_— . 21
e lez + d|? e E=L clez +d) (2.1)

Fixing the argument in (—m, 7|, we now define the holomorphic modular forms.

Definition 2.1. Let k € Z + % and v be a weight k multiplier system on the congruence subgroup I'. A
holomorphic function f:H — C is called a holomorphic modular form of weight k for (U,v) if it satisfies:

(1) f(yz) = v(7)(cz + d)* f(2) for all y € T;
(2) f is holomorphic at the cusps of T.
Moreover, if f also satisfies
(3) f vanishes at all the cusps of T,
then f is called a holomorphic cusp form of weight k for (T',v).

We denote My (T',v) (resp. Si(T,v)) as the space of holomorphic modular (resp. cusp) form of weight k
for (T',v). Recall n =n — «,,. For f € My(T,v), f has a Fourier expansion at the cusp co given by

f(2) =" ap(n)e(iiz). (2.2)
n=0

13



We call ay(n) the Fourier coefficient of f (at the cusp co). For any cusp a of I, let o4 = (& B) be the scaling

matrix (1.10) of a. Then we can write the Fourier expansion of f at the cusp a as
(Cz+ D) *f(0q2) = ara(n)e(ngz). (2.3)
n=0

Therefore, f € Si(I',v) if and only if af4(0) = 0 for all cusps a of I". The spaces My (T, v) and Si(I',v) are
both finite dimensional.

The hyperbolic measure du(z) on H is defined by

dxdy

ne (2.4)
where dz and dy are the usual Lebesgue measures. One can check that for all v € GLy(R), we always have
du(yz) = du(z), i.e. du(z) is invariant under the action of GLa(R) on H. Therefore, for f,g € My(T,v), the

following measure
y" f(2)g(2)dn(z)

is invariant under the action of T' on H (briefly called T-invariant). We define the Petersson inner product for

holomorphic forms as
——dxd
)= [ o rEE (25)
I\H Y

When either f or g is in Si (T, v), the integral converges absolutely. The linear space Sy (T, v) is then a finitely

dimensional Hilbert space with the Petersson inner product.

2.1.1 Holomorphic cusp forms of half-integral weight

Recall that we have already defined the two weight 1 multiplier systems: vy (1.15) and 1, (1.18). Let r(¢)
denote the conductor of a Dirichlet character . When the weight k = %, we have the Serre-Stark basis
theorem:

Theorem 2.2 ([32, Corollary 1 of Theorem Al]). The space M1 (I'1(N),vg) has a basis consisting of
2
Oye(2) =D t(n)g™
neL
where v is an even primitive Dirichlet character whose conductor r(1) satisfies 4r()?t|N.

For positive integers NN,[ and a weight k € Z + % multiplier v on I'g(N), we know that v is also a weight
k + 21 multiplier system on I'o(NV). For simplicity we denote K = k + 2/ € Z + 1. Recall that Sk (To(N),v)
is a finite-dimensional Hilbert space under the Petersson inner product. If we take an orthonormal basis
{Fi(-): 1<j<d:=dimSg(To(N),v)} of Sk(I'o(N),r) and write the Fourier expansion of Fj as

Fi(2) =) aj(n)e(iiz),

n=1



then we have the Petersson trace formula

d

) K S(n,n,c,v) 4rn
=1+2 |l — ) 2.
i 2ol = 2m Y SR e (26)

Nle

The left hand side is independent from the choice of the basis.

2.2 Maass forms

In this section we recall some basic facts about Maass forms with general weight and multiplier, which can be
found in various references like [11], [12], [33]-[35]. Let I" denote our congruence subgroup with (3 1) €T
and H denote the upper-half complex plane. Recall the definition of j(7, z) in (1.7) and the definition of the
weight k € Z + % slash operator defined in (1.8). We call a function f : H — C automorphic of weight k& and

multiplier v on T" if

fley =v(y)f forallyeTl.

Let Aj(T, v) denote the linear space consisting of all such functions and L (T, v) C A(T, v) denote the space

of square-integrable functions on I' \ H with respect to the measure

dxdy
Y2

du(z) =

and the Petersson inner product

for f,g € Li(T',v). For k € R, the Laplacian

0? 0? 9]
02 Y
A=y <6:c2 + 8y2> zkyaa7 (2.7)
can be expressed as
k k
A =—Rp oLy —=(1—= 2.
k Ry oLy, 5 < 2) (2.8)
k k

where Ry is the Maass raising operator

k 0 k 0 0
=4 2iy—=—=-+wy| =— —i— 2.1
R 2 + Yo: T 2 tw <8x 28y> (2.10)
and Ly is the Maass lowering operator
k 0 k 0 0
Lok g @k 24,9 2.11
R = 2+y<a +28y> (2.11)

These operators raise and lower the weight of an automorphic form as

(Rif)lkv2 v = Re(flxv),  (Lif)lk—2v = Li(flxy), for f € Ax(T,v)

15



and satisfy the commutative relations
RpAy = ApyoRyg, LiAp = Ag_2Ly. (2.12)

Moreover, Ay commutes with the weight k slash operator for all v € SLa(R).
We call a real analytic function f : H — C an eigenfunction of Ay with eigenvalue A € C if

Apf+Af=0.

From (2.12), it is clear that an eigenvalue A for the weight k Laplacian is also an eigenvalue for weight k + 2.

We call an eigenfunction f a Maass form if f € A (T",v) is smooth and satisfies the growth condition

(flen) (@ +iy) <y +y'™°

for all 4 € SLy(Z) and some ¢ depending on v when y — +o0o. Moreover, if a Maass form f satisfies

/0 (flkoa)(z + iy) e(ay,qx)dz =0

for all cusps a of T, then f € L (T, v) and we call f a Maass cusp form. For details see [11, §2.3]

Let B(T',v) C Li(T, v) denote the space of smooth functions f such that both f and A f are bounded. One
can show that By (I', v) is dense in L (', v) and Ay, is self-adjoint on By (T, v). If we let Ag := Ao(k) = %l(lf@),
then for f € By (T, v),

=) > olfs £,

i.e. —Ayg is bounded from below. By the Friedrichs extension theorem, —A; can be extended to a self-adjoint
operator on L (T, ). The spectrum of Ay consists of two parts: the continuous spectrum \ € [i, 00) and a
discrete spectrum of finite multiplicity contained in [Ag, 00).

Non-zero eigenfunctions corresponding to eigenvalue )y come from holomorphic modular forms. To be
precise, let My(T",v) denote the space of holomorphic modular forms of weight & and multiplier v on T
There is a one-to-one correspondence between all f € L (T, v) with eigenvalue Ay and weight k& holomorphic

modular forms F' by

k
y2 F(z k>0, FeMJ,v),
s =4 V) ) (213
y 2 F(2) k<0, Fe M_,T,7).
For the Fourier expansion ), ., a,(n)e(nz) of such f, we have
E>0 = ay(n)=0for 7:1 <0, (2.14)
k<0 = ay(n)=0forn>0.

Let A (T, v, k) denote the first eigenvalue larger than Ay in the discrete spectrum with respect to T,
weight & and multiplier v. For weight 0, Selberg showed that Aa(T'(N),1,0) > 3 for all N [23] and Selberg’s
famous eigenvalue conjecture states that Aa(I",1,0) > i for all I'. We introduce the hypothesis Hy as

Hp: Aa(To(N),1,0) > 1 -6 for all N. (2.15)

Selberg’s conjecture includes Hy and the best progress known today is Hﬁ% by [25]. We denote Aa (G, v, k) as

16



Aa when (G,v, k) is clear from context.
Let Ek(F, v) C Li(T,v) denote the subspace spanned by eigenfunctions of Ag. For each eigenvalue A, we
write
)\Z%—H“Z =s(l—s), s=g+ir, rei(0,7]U[0,00).

So r € iR corresponds to A < i and any such A € (), i) is called an exceptional eigenvalue. Set

ra(N,v, k) ::i-\/i —AaTo(N), v, k). (2.16)

Let £ (T,v,7) C L(T,v) denote the subspace corresponding to the spectral parameter r. Complex

conjugation gives an isometry
Li(T,v,7) «— L_(T,7,7)

between normed spaces. For each v € L(n,v,r), we have the Fourier expansion

v(z) = vl +iy) = coy) + Y p)Wi i i, (47| 71]y)e (i)
7£0
where W, ,, is the Whittaker function as in [31, (13.14.3)] and
0 a, #£ 0,

coly)=4¢ 0 a, =0and r >0,
p(0)yz " @, =0 and r €0, 1.

Using the fact that W, , is a real function when & is real and ¢ € RUR [31, (13.4.4), (13.14.3), (13.14.31)],

if we denote the Fourier coefficient of f.:= f as p.(n), then

e[

2.3 Harmonic Maass forms

The following construction can be found in [7], [21]. Let k € % +Z,z=x+iyforx,yec Randy #0, s € C,
4|N is a positive integer. We define the weight k hyperbolic Laplacian (different from the former section) by

2 2
ﬁk = —y? (8812 + 88?42> + iky <(‘fx —l—z;y) .
Definition 2.3. With the notations above, let x be a Dirichlet character modulo N. A weight k harmonic
Maass form on To(N) with Nebentypus x is any smooth function f:H — C satisfying:
(1) For all v € To(N), we have f(vz) = x(d)ve(y)** (cz + d)* f(2);
(2) Apf =0;
(3) There exists a polynomial P(z) =, .oat(n)q" with coefficients in C such that

f(z) = P(2) = O(e™Y)

for some C > 0. Analogous conditions are required for all cusps.
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Remark. We denote the space of such harmonic Maass forms by Hy (N, Xygk). The polynomial P is called the
principal part of f at the cusp oo, with analogous definition at other cusps. When the transformation formula
in condition (1) is replaced by f(vz) = v(v)(cz + d)* f(2) for some multiplier system v, we call f a weight k
harmonic Maass form for (I'g(NV), ) and the principal parts of f are defined similarly for cusps of T'g(NV).

Denote the anti-linear differential operator & by

(€40)(2) = 2ig" 2 (9(2)) = R_x(s9(2)

where Ry, is the Maass raising operator defined in (2.12). If we let G(z) = g(Bz) for some constant B, one
can check that (£,.G)(z) = B17%(¢£49)(Bz). The following lemma is crucial in Chapters 6 and 7:

Lemma 2.4 ([36, Proposition 3.2],[21, Lemma 2.2]). The map
&k« Hi(N, xvg%) = So_i(N, xvy ")
is a surjective map. Moreover, if f € Hy(N,x) has Fourier expansion

f(z) = Z c}f(n)q" + Z ¢y (M)T(1 = k,4n[nly)q"  for some ng € Z,

n>ngo n<0
then -
(& f)(z) = =(4m)' 75 Y " cf (—n)n' Hgn.
n=1

Remark. We denote the holomorphic part of f by

In(z) = Z clf(n)q" =P(z) + Z cjf(n)q”

n>ng n>0

and the non-holomorphic part of f by

fan(2) =Y ¢; (MI(L =k, 4zlnly)g",

n<0

where I'(s, 8) is the incomplete Gamma function defined by
I'(s,B) = / ts"letdt, B >0.
B

We also define a mock modular form as the holomorphic part of a harmonic Maass form.

We define the following functions to prepare our constructions of harmonic Maass forms later. Denote
Mg, and Wy, as the M- and W-Whittaker functions defined at [31, (13.14.2-3)]. For s € C, z,y € R, and
keZ+ %, we define

Mi(y) = Iyl’gMgsgny,s_%(lyl) and @5k (x + iy) == M,(dmy)e(x). (2.18)

We also define
_k
Waw) = [y W sgny s (01). (2.19)
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These functions have the following properties. For y > 0, by [31, (13.18.4)] we have

My i(=y) =y 5M s 1 x(y) = (1—k) (D1 —k) —T(1—ky))e?, (2.20)

(2.21)

Moreover, @5 ;(z) is an eigenfunction of Ay, with eigenvalue s(1 — s) + szf%. Specifically, when s =1 — %,
we have

Appy s =0. (2.22)

2.4 Vector-valued theory

2.4.1 Vector-valued Maass forms

Analogous to the scalar-valued case and [37] for vector-valued modular forms, here we define vector-valued
Maass forms on a congruence subgroup I' of SLy(Z) where (1) € T.

For a vector or a matrix M, let MT denote its transpose and M denote its conjugate transpose
(Hermitian). We clarify the notations for the remaining part of this thesis here. Note that we are not using

the language of Weil representations.

Notation 2.5. The boldface letter, e.g. u or F(z), always denotes a vector or a vector-valued function of
some dimension D > 2, respectively. For 1 < ¢ < D, let ¢y := (0,---,0,1,0,--- ,0)T denote the unit vector
which has 1 at its £-th entry and O at the others.

When the superscript - appears, u®, u), FO)(2) and F© (z2) are defined by

D D D
u= Zu(é) = (W, u® ... WPHT F(z) = ZF(E)(Z) = ZF(E)(Z)%
=1 =1 =1

where w9 = uO¢; and FO(2) = FO(2)e,.

Given two D-dimensional complex vectors u, v € CP, we define their inner product as viiu = Zle MONON
Let Mp(C) denote the space of D x D complex matrices and take M € Mp(C). Then the inner product of
M~ and u is

(Mv)Hu = v T,

Recall that in the scalar-valued case, we fix the argument (—m, 7] and define the automorphic factor
j(7,2) in (1.7). Denote our vector-valued function on the upper-half complex plane H by
D
F(2) = (FO(2), FO(2), . FP ()T = 3 FO(2)e

{=1

and define the weight k € R slash operator | by
(1) (D) T iy )k
(Flen)(=) == ((FOL)(z), -, (FPI) () 1= 5(7,2)“F(32).
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Definition 2.6. For a congruence subgroup I' of SLo(Z) with (§ 1) € T, we say that £ : T — GLp(C) is a

D-dimensional multiplier system if it satisfies the following compatibility conditions:
(1) £(vy) is a unitary matriz for all y € T, i.e. (7))~ = ().
(2) £(—I) = e~ ™*[p. Here I is the identity matriz in SLo(Z) and Ip is the identity matriz in GLp(C).
(3) §(n2) = wk(71,72)§(1)&(72) for all 1,72 € ', where
wi(y1,72) = 3 (72, 2) "5 (71,722) 5 (172, 2) 7F.
(4) For every cusp a of T, & (oa($1)ogt) = diag{e(—agg), . ,e(—agz))} for some agz €1[0,1). Here oq
is the scaling matriz of the cusp a of I

Remark. The multiplier system & may not be a matrix representation of I" because when k ¢ Z, w(y1,72)

may not always be 1, hence ¢ is not multiplicative. In (4), if € is clear from context, we will simply denote

4 4
ol?) = o).

For the weight k& € R and a D-dimensional complex function F such that each component F®) is a smooth
function, if
ArF(z) + A\F(2) =0

for some A € C, then we call F a D-dimensional eigenfunction of Ay with eigenvalue A. In this case, every

component F©) of F is a eigenfunction of Aj with eigenvalue .

Definition 2.7. A vector-valued Maass form F : H — CP of weight k € R, eigenvalue A € C and D-

dimensional multiplier system & on I' is a vector-valued function F = (F(l)7 e 7F(D)) satisfying:
(1) Each FY is real-analytic on H;
(2) (Fle7)(2) = §(7)F(2) for all y € T.
(3) (Ax + MF(z) =0.
(4) Each F© satisfies the growth condition
(FOUA)(2) <y +y'77  for some o >0, asy— oo
for all v € SLy(Z).
In addition, if ¥ also satisfies

(5) For every 1 < £ < D and every cusp a of T’
1
/ (FO|poq)(z + iy) e(ozge)x)dx =0,
0

then we call F a D-dimensional Maass cusp form.
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Suppose F is a weight & Maass form with multiplier system £ on I'. By Definition 2.7, each e(oz((1 Y FO|ro4)(2)

is a periodic function with period 1 on H. Then F() admits a Fourier expansion at the cusp a as

(F( lkoa) (T + iy) Z Ca (nﬁ%) ,  where ngé) =n— aEf).
neZ

As in the classical case, since F() is an eigenfunction of Ay with eigenvalue A = i+7"2 for r € [0, 00) U1[0, 00),
by solving the partial differential equation using the method of separation of variables, F©) admits a Fourier

expansion of the form

. Y4
FO@ +iy) = p20,9) + Y oQW, o, (rin@ly)e (nQz)
n&gio

(2.23)

where p%)(O y)=0ifn#0or ol 75 0, and pF (O y) = c1y2 T 4 cyy2 i for some constants ¢y, ¢y € C if
n=ao¥ =0. Here W, is the W-Whittaker function defined at [31, (13.14.3)] which satisfies W, , (o) € R
and Wy, =W, _, if K,a € Rand p € RUiR.
We call F: H — CP a vector-valued automorphic form of weight & and D-dimensional multiplier system
EonTif
(Fl7)(z) =&(y)F(2) forallyeT. (2.24)

and denote the linear space of all such automorphic forms as Ag(T',§). For F,G € Ai(T,¢), we define

(formally) their Petersson inner product by

(F,G) / ZF@ GOy _ GH(z)F(z)dxgy. (2.25)
T\H j— y? I\H Y

This inner product is well-defined: for all v € T', since dzgly is invariant under v, we have

GHF ) T = [ G a)g) T )

C\H Y I'\H

— (F,G).

Let L (T',€) C Ag(T,€) denote the Hilbert space of square-integrable functions under the above inner product.
Then if F € L (T, £), we have

/ |FO (2 )|2dxdy<oo for 1< < D.
I\H y?

2.4.2 A representation on I'y(p) twisted by 7,

In this section we review the notations and results in [18]. Denote g = €?™** for z € H and the g-Pochhammer
symbol (a, q)n := [[;—, (1 —ag?~1). Define

14 1 -1 nanr% Sn(n
M (,Z) = E :( ) e 47 (1) (2.26)
P

(QaQ)oo ne? 1—gq
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and

N (;5 Z) -1+ f: ] ek 3) gz" () (2:27)

((L q)oo 1—2 COS(QT?FE)qn + q2n

n=1

Further define

M (f;z) =25 (1) 3 (e;z> ., N <£;z> = csc (ﬂ-e) ¢ #N (E;z> ) (2.28)
p p p p p

We also define the following functions: M (a,b,p, z) and N (a, b, p, z) as [18, (2.7), (2.8)]; non-holomorphic
functions Tl(ﬁ; z), Tg(f); z), Ti(a, b, p; z) and Th(a,b,p; z) as [18, (3.1)-(3.4)];

, 2 exp (—3m’z(% — %)2) , 0< % < %,
€9 (p;z) =< 0, i< f; <3, (2.29)
c(a 5\2 5 L
2exp (—=3miz(¢ - 2)?), 2< 5 <1

and e9(a, b, p; z) as [18, before Theorem 2.4]; and

a(5e)-w(5) 0 (£)
o (5e) = (5 (5) -2 ).

gl (a;b7p§2) ::N(a7bap; Z) - Tl (a7bap; Z) ) (232)
Ga (a,b,p; z) := M (a,b,p; 2) + €2(a, b, p; 2) — T> (a, b, p; 2) (2.33)

as [18, (3.5)-(3.8)]. Bringmann and Ono proved the following result in 2010.

Proposition 2.8 ([8, Theorem 3.4], [18, Corollary 3.2]). Suppose p > 5 is a prime. Then

{gl (;;7'2) ag2 <£,Z> 1<£<p}u{g1 (a7bap;z)ag1 (a7bap;z):0§a<pa 1§b<p}

is a vector valued Maass form of weight L for SLy(Z).
We clarify the notations to use in the remaining part of this thesis:

Notation 2.9. For integers A and n > 0, let [A]y,y denote the least non-negative residue of A (mod n), i.e.

0 < [Al{ny < n defined by [Al{ny = A (mod n). If the prime p > 5 is clear from context, then we simply
denote [Alfpy as [A].

If (A,n) =1, let Ag,y denote the inverse of A modulo n, i.e. defined by AAg,y =1 (mod n). Let A, be
defined by AA, = —1 (mod n) if n is odd and AA,, = —1 (mod 2n) if n is even.

Garvan computed the following transformation laws on T'g(p):

Proposition 2.10 ([18, Theorem 4.1]). Let p > 5 be a prime. Then

G1 (ﬁ;w) = p(e, d, £,p)75(7)(cz + d)2 Gy ([CZ];Z> fory=(4}) €Tolp),

where

(e, d, £, p) == exp (3”;?5 ) (—1)5 (—)l% ], (2.34)
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Note that in the original paper [18], the notation for the right hand side of (2.34) was pu(y,£) where
v = (g 2). Since it only requires the value of ¢ and d, we modify it to u(c, d, ¢, p) here for convenience. We

use the above transformation formula to construct our (p — 1)-dimensional multiplier system .

Definition 2.11. Let p > 5 be a prime. Define M, : To(p) = M,_1(C) by

p—1
My(y) =Y ple,d,£,p)Befag  and  pp(y) := Tp(7)Mp(), fory=(24) € To(p),
=1

where Ej . is the (p — 1) x (p — 1) matriz unit whose (j, k)-entry equals 1 and all the other entries equal 0.
This matrix has the following compatibility properties:
Proposition 2.12. Let p > 5 be a prime and p, be defined as in Definition 2.11. Then for ally,v1,7v2 € To(p),
(1) det(py(v)) = £75,(7)"~;
(2) wp(Y)"t = (MY, ice. pp(y) is a unitary matriz;

(3) pp(—=I) = e T p—1, where Ip_1 € My,_1(C) is the identity matriz;

(4) tp(m1y2) = wi (1, 72) tp (V1) p (2) -

3
Proof. Since 7, is a weight —% multiplier system on SLs(Z), it suffices to prove the corresponding properties
for M), in weight 1. Denote v = (‘; S). When (d,c¢) =1, we have ptd and for 1 < ¢ <p—1, dl runs over
all residue classes modulo p and vice versa. Thus, u,(7y) is an matrix with only one non-zero entry in every
row and every column. Let sgn(o) € {£1} be the signature of the permutation o : ¢ — [d¢] in (Z/pZ)*. By
(2.34), we have

det M, (v) = sgn(o) 1:[ (e, d, 0, p)
=1
ooy (3T (= DpCp =D s
_g()P<p2 6 )(1) Zl;[()(l)
— Sgn((T)(_]_)C(Gl-‘rl)'13771 Iﬁ(_l)df-l-[dﬁ]
£=0

= sgn(0)(—1) VDT — o (g),

where we have used the following facts for any =,y € Z: (—1)*? = (-1)%; {%J =z + [z] (mod 2); if (z,y) =1
then (z+ 1)(y + 1) is even.
For (2), it suffices to show that M, () is a unitary matrix. Since P, := 25;11 Ey (40 is a permutation

matrix with P, = PT we have
-1
My(y)™ = (diag{u(c, dt,p):1<l<p—1}- Pa)
=PI diag{u(c,d, £,p) : 1 <€ <p—1} = M,(y)".

For (3), we have p(0,—1,¢,p) = —1 for all £ and p. For (4), it suffices to show that M, : I'y(p) = GL,_1(C)

is multiplicative, which was proved in [18, Theorem 4.1]. O
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Note that Proposition 2.12 has proved all the requirements in Definition 2.6 except (4). We verify the
conditions among the cusps co and 0 of I'g(p) here. Since p, and 7, will appear together in the next section,

for simplicity we denote aﬁ T a,(fp)yu and a(_ezl = al%)’u

for the cusp a. Since
Hp (((1) %)) = 6(‘%)113—1

is a diagonal matrix, we have

afio =5 and nye :=n— 5 forallne€Z. (2.35)
For i, we have a(f())o =23 and n_ :=n — 2. Moreover, we can take the scaling matrix (see (1.10)) of the
cusp 0 of Ty(p) as g = (\% _16‘/17). Since oo(§ 1oyt = (2, 9) and by (1.19)

vy (003 Dog ) =iy (3 20)) =i (5) e (=B) =e (%),

we have
— . Q02
i (00(b 1o ?) = diag {e (~35 — &) (-1 s 1<e<p—1}.
Therefore, we define a(f()) € [0,1) such that

e (—osz())) =e (—% - 2%) (=1)* and define ngf()) =n— osz()) for n € Z. (2.36)
Note that osz()) # 0 because 1 < ¢ <p—1and (p,24) = 1.
We will need the following properties in Chapter 7 where we construct certain linear combinations of

Maass-Poincaré series. For each integer » > 0, we denote
z, as the only solution of 32° — (3 +7r)z+ 4 =0 in (0,3). (2.37)

The sequence {z, : 7 > 0} has % =z > x1 > To > -+ > 0. Fix the prime p > 5. For each integer » > 0 and
positive integer a with (a,p) = 1, when z, > % (otherwise the following set will be empty), we define the

condition set

[af]

> a,r <= {1 <¢<p—-1:—¢ (O,xr)u(lfxr,l)} and D7 <=>1,r<. (2.38)
p

By (1.39), we observe that
d¢par>0 ifandonlyif ¢e>a,r<.

By (2.36), we find that ozsf()) is the fractional part of

302 1+2r£+ P

2p 2 24>

2
3 L (14-27)p 14 I
(1-2) -2 (1) 4 2 whenl—a, <f<l

when 0 < £ < z,,
p
(2.39)

p

By the definition of ¢ p o, in (1.39), we observe that agf()) is the fractional part of pdsp 1, When dgpqr > 0.
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Hence, for every integer r > 0, we define a special vector X, = (X» (1) . X(p 1)) € ZP~1 such that

X0 — { [—POrpasl, if depir >0, ie L EBT <, (2.40)

0, otherwise and never used.
Then we have X{1* = [—Pde,pa,r] by (1.39) and
X0 =x —alf) = —ps hen § 0, i.c. when ¢
1o 30 = —PO¢p1,r When ogpi, >0, 1.e. when £ €> 7 <,

which is the “correct order” to be matched for the Maass-Poincaré series in Chapter 7.

In general for any vector m € ZP~!, we denote mff()) =m0 — Ef) For simplicity we write 1 — m :=

¢ and denote m < 0 if m'* <0 for a or i,, we have ) =1 —a, € (0,1) and define
= (1—m® dd 0 if m® < 0 for all £. For Ty, we have a') = 1 —al%) € (0,1) and defi
(f% (e) =m0 — (fg,. We have the property
14 4
(1-m) =-m. (2.41)

We have already proved the following lemma.

Lemma 2.13. We have the following (p — 1)-dimensional multiplier systems on T'o(p): pp of weight % and

Tp of weight — , in the sense of Definition 2.6.

In addition, by [18, Corollary 4.2], or directly by (2.34), one important property for p, is

1ip(v) = Tp(V)Ip—1  for v € To(p?) NT1(p). (2.42)

Suppose F € A1 (To(p), up) (see (2.24)), then for each ¢, we have F ¢ AL (To(p*) NT1(p), 7). This
fact allows us to use the notations for (scalar-valued) Maass forms in §2.2 here for vector-valued Maass
forms with Petersson inner product defined in (2.25). For example, L1 (I'o(p),1p) is the space of weight
1 vector-valued square-integrable functions in A1 (Lo(p), pp). For any F € L1(To(p), pp), we have F® ¢
L1 (Lo (p?) NT1(p), 7). It clearly follows that Ay is a self-adjoint operator on L1(To(p), pp). The spectrum of
A1 on L1 (To(p), p) is contained in the spectrum of Ay on L1 (I'g (p*) NT'1(p), ), which includes a discrete

spectrum % = )Xo < A1 < --- of finite multiplicity and a continuous spectrum [%, 00). For each eigenvalue A

4
of Ay on L1(To(p), pp), we write A = 1+ 12 for r €i[0,1) U[0,00) and call r the spectral parameter. We

still denote £ 1 (To(p), 1p, ) as the space of Maass eigenforms with spectral parameter r. With the property

p—1
E%(FO( )mupar) g L
1

( ( 2)0]:‘1(]))7777,7"),

~
I
Nl

we have the following proposition.
Proposition 2.14. The space E%(Fo(p),,up,r) is finite dimensional.

Proof. For any V(z,7) = (VW (z,r), - , VP (z,r)) € E%(I‘O(p), fip,7), we have VD (z,7) € [i%(FO(p2) N
Ty (p), 7y, r), which is a finite-dimensional space. Moreover, for each 2 < d < p — 1, we have (d,p) = 1 and we

can pick 74 = (p 4) € To(p). By the definition of p,, we have
V@(z,r) = plp,d, 1,p)vy(ra)V P (2,7),
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i.e. the other components are determined by the first one. We conclude with

dim £1 (Lo (p), pp, ) < dimE%(I‘o(pz) NTi(p), Ty, 7).

We summarize these properties in the following lemma for future convenience.

Lemma 2.15. Suppose F : H — CP~1 satisfies
F(12) = pp(7)(cz +d)*F(2)  for 5 € To(p).
Then for each £, 1 < <p—1, FO satisfies
FO(z2) =my(0)(ez + )FFO(2) fory € To(p?) NT1(p)-
If we denote G(z) := F(242) and hence G (2) = F(V)(24z2), we have
GO (y2) = vp(1)(ez +d)2 GO (z)  for v € T1(576p°).
Moreover, the map z — 24z gives an injection

S (Fo(pg)ﬂrl(p),ﬁ) - S%(F1(576p2),ug)

f — g defined by g(z) := f(24z).

1
2

Proof. This is directly proved by our discussion above and the following fact:

oy (o %) (8" 0m) ) g (05 0ae) (200) =1

fory= (%) € To(24). O

2.4.3 Vector-valued Kloosterman sums

In this subsection we define the vector-valued Kloosterman sums with (k, 1) = (3, u,) or (—3,%,). First we

consider the cusp pair coco. Let m,n, ¢ € Z with p|e. Define

Mool + Npood _ ]
Soooo(ma n,c, :u) = Z € () M(’y) ! ol (243)
7= %) ere\ro(p)/ T

Since 1 ((2%))”" maps the entry at [af] to £, we extract the -th entry of the vector Seoeo(m, 1, ¢, 1) as

Séﬁ)oo(mm,c, p) = L. S’éf;)oo(m,n,c, v)ey.

Z e <miooa+niood) M((Zrl))_le[ai
c [al

sin(==) (2.44)

d (mod ¢)*
ad=1 (mod c)

For the cusp pair Oco there are more requirements for our application. For every integer r > 0, recall

our definitions on z, in (2.37), ayo in (2.36), and > r < in (2.38). For cusp pair (a, b), we define pqp () for
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v € 07 To(p)os as in [38, (3.4)]. Hence, by 0o = I and wy (v, 1) = 1, poeo(7) is defined for v € o5 'To(p)
and given by

fose (7) = p(o0y)wi(og ', o0v). (2.45)

For every integer © > 0 and any vector m € ZP~!, we define the Kloosterman sum

) ¢
B My~ — Ntooby/P
Sooe (M, 0, @, p1;7) = > Hos(1)™H Y e ﬁ_a e
o 4 Ledra VP (2.46)
- v
(o5 )

Y€l \og 'To(p)/Tos

Note that oy = (¢4) € Io(p) for v € I'c \ 05 'To(p) /T in the summation above, hence figoo (7)™ maps

the entry at [af] to £. Also note that only the values m®) for £ €> a,r <1 are used because £ €> a,r < is

_c_ d_
equivalent to [af] €>> r <. Therefore, by denoting v = (ﬂ\fﬁ 4\{1’/5» the £-th entry of Sgoo(m, n, a, ;1) is

. mi%e])—jﬁ — Ntooby/P
E Hooo (7)€ —ayp
S(f) (m([aé])7n’a,u/;7a) _ b (mod a)*

g, fLE>a,r<,

Oco 0<c<pa,p|c

s.t. ad—bc=1 (247)
Oey, otherwise

=: Sé?o(m([“é]),n, a, fip; T)es.

In Theorem 1.14, we pick X, defined in (2.40) for every integer r > 0 and have

) ¢
X\ o5 = iocby/p

Soce(Xy, 1, Gy pip; 1) = Z fooo (7)™ Z e er.. (2.48)
c d Leprd _a\/ﬁ
= v»_ VP
<_“\/15 _b\@)
€T \op 'To(p)/Too
_c_ _d_
By denoting v = (ﬂfp 7bpp), we extract the (-th entry of the vector Soeo (X, 1, @, pip; 7):

X([M])L—n b\f
_ r,40 +0004/P
Z Hoso (7Y) 'e VP

Clag, fLE>a,r<,

. —ay/p
S(()Z) (Xr([al]),,rha’ ,U/p;r) _ b (;nodaa)C
"" N e (2.49)
Oep, otherwise

=: S(()?O(XT([“Z]),n, a, fip; T)es.

2.4.4 Vector-valued holomorphic modular forms

Let v be a weight k = +1 (one-dimensional) multiplier system on the congruence subgroup I'. Recall Mj(T, v)
as the space of weight k& holomorphic modular forms and Sk (T', v) as the space of weight k holomorphic cusp

forms. Every f € M (T, v) satisfies the transformation property

F(r2) = v(3)(ez + ) f(z) fory = (28) €T.
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Similarly, if p is a weight k& = :l:% D-dimensional multiplier system on I' (Definition 2.6), then we denote the
space of weight k& holomorphic modular forms on (I, u) by M (T, 1) and the corresponding space of cusp
forms by Si(T, p).

From now on we take the prime p > 5 and let (k, 1) = (3, ) or (—3,7,) on Io(p). By Lemma 2.15 and
using the fact that aio 7 0 in (2.35), we have

p—1
My (To(p), ptp) = S5 (To(p), 1p) € €D Sy (To(p®) N T (p), 7). (2.50)
=1
Similar as Proposition 2.14, we also have
dim My (To(p), p1p) < dim Sy (To(p®) NT1(p), 7)) - (2.51)

Lemma 2.15 also shows that, for any f € S1 (To(p?) N1 (p), 1) C Sy (T1(p?), ), the map z — 24z gives
g € S1(T1(576p%), 1) for g(z) == f(24z). (2.52)

The Serre-Stark basis theorem (Theorem 2.2) implies the following lemma.

Lemma 2.16. Fiz a prime p > 5. Let f € M% (T'1(576p?),ve) have Fourier expansion as

1) =Y )"
n=0

where ay(m) =0 for all m # —1 (mod 24). Then if p # —1 (mod 24), we have f = 0; if p = —1 (mod 24),
we have that f is a multiple of n(24pz).
Proof. By Theorem 2.2, if 0, € My (T'1(576p?), vp), then whenever ¥ (n) # 0, i.e. whenever (n,r(v)) = 1,
we have tn? = —1 (mod 24). Since #|144p? and p? = 1 (mod 24) for primes p > 5, we only have the possibility
if t =p=—1 (mod 24). Then we have r(1))|12, hence r(¢)) = 1,3 or 12.

Since 1) is primitive, 7(1) = 1 means 9)(n) = 1 for all n, hence 1(2) = 1 while p-22 # —1 (mod 24). When
(1) = 3, the only primitive character is (=2) which is odd, not to mention 1(2) = —1 and p-22 # —1 (mod 24).

When 7(¢p) = 12, the only primitive character is (12). Note that

(12 e
24z) = — 4"
1) = ()
and the lemma follows. O
Lemma 2.17. IfF = Zé:ll FO(2)e € My (To(p), pp) has Fourier expansion

FO@) =Y al (n)g" % for each 1 <0 <p—1,

n=1

then F = 0.

Proof. Consider F(24z). By Lemma 2.16 and (2.52), if p Z —1 (mod 24) we already have the desired result. If
p = —1 (mod 24), we have F()(z) = c¢7(pz) for some constant ¢(*) € C and for each £. By [39, Corollary 3.5],
n(pz) € M1 (Lo(p), (5)7y) because p = —1 (mod 24).
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Now we take v = (11, (1)) By Proposition 2.10, we have

(pz+1)72FO(y2) = pu(p, 1,2, p)vy (1) F O (2),

while by F©)(2) = ¢®n(pz), we have

(b2 + 1) FO(32) = (D (MFO ().

However, u(p,1,¢,p) = exp(%)(—l)e cannot be +1. Then the only possible case is ¢) = 0 for all
1</¢<p-—1and we have F = 0. O
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Chapter 3

Sums of Kloosterman sums: general

bounds

In this section we first record the estimates by Goldfeld and Sarnak in [16]. Although their original paper
did not provide a uniform bound (in m, n and ), Pribitkin [34] derived a uniform bound with polynomial
growth in |[ma]. Such uniform bound is weaker than Theorem 1.7, but it works for all weight & € R multiplier
systems.

Nevertheless, a bound of polynomial growth in |mn| is enough to ensure the convergence of certain
Maass-Poincaré series. When we want to prove the exact formulas for ranks modulo p > 5, the proof requires
uniform bounds for sums of vector-valued Kloosterman sums. As a generalization of [16], we prove such

uniform bounds in the vector-valued case, which helps us in the proof of Theorem 1.14 in Chapter 7.

3.1 The work of Goldfeld and Sarnak

In this section we briefly outline the work of Goldfeld and Sarnak [16] restricted to half-integral weight. Let T’
be a congruence subgroup of SLy(Z) with ({}) € I'. Let v be a weight k € Z + $ multiplier system on I'.

Recall the Kloosterman sums defined in (1.12). We define the Kloosterman-Selberg zeta function as

Tm(s) = 3 SMCV) (3.1)

2
c>0, s.t. e
(&¥)er

* %

We will omit the condition (} ;) € T for simplicity. When I" = T'y(/N) for some positive integer N, we will
write the sum simply as N|c > 0. In this section, we keep the integers m,n > 0.

Goldfeld and Sarnak proved the following theorem.

Theorem 3.1 ([16, Theorem 1]). The function Z,, ., (s) is meromorphic in Re s > % with at most a finite

number of simple poles in (%, 1), and satisfies the growth condition

5|3
Zmmw(8) L0mmnpk —

1
2

fors:a+it,a>%cmdt—>oo.
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The following Mellin transform was from [16, (2.3)] and will be used frequently in the next section. For
o >0 and Re(s + 1 + 4) > 0, we have

>~ dy T+ wl(s+3—p
2ray, s _ s 2 2
e Y wdray)— = (4o . 3.2
/ Wi (dmay) ! = (4ma) S (32)
For a positive integer m, we define the non-holomorphic Poincaré series as
Pu(zis,v) = S 01y, 2)~Fe(imz) (Imy)*. (3.3)

'YGFOC\F

The above series converge absolutely and uniformly in any compact subset of Re s > 1. Moreover, P,,(z;s,v) €

L (D, v) (see §2.2). They also satisfy the recursion relation
P (z;8,v) = —4dmm(s — %)%S(l,s)(Pm(z; s+ 1,v)), (3.4)

where Zy 1= (Ag + A)~! is the resolvent of Ag. As Ay may have exceptional eigenvalues at Aj < %, the
resolvent %1, is holomorphic in Res > % except possible points at s; such that s;(1 —s;) = A;. Hence
by (3.4), P,.(z;s,v) can be meromorphically continued to Re s > % except a finite number of simple poles at
such s;.

Let u;(z) € Ly(I',v) be the eigenfunction of Ay with eigenvalue \; = s;(1 — s;). Then u; has Fourier
expansion

wi(2) = 93 (0.9) + 32 MWy sy o,y (4rlily) (i), (3.5)
A0

where Wp ,,(y) is the Whittaker function, p;(0,y) = p;(0)y* + p}(0)y' =% if n = o, = 0, and p;(0,y) =0
otherwise. The residues of P,,(z;s,v) at s = s; € (3,1) can be computed as in [16, (2.5)]:

— I'(2s; — 1
Res Py, (2;8,v) = pj(m)dmm'™ (Sjik)u

5=5; I'(sj —

5(2). (3.6)

N
—

Theorem 3.1 follows from the following two lemmas and

[(2s+1)
I(s+5T(s—%+2)

Lemma 3.2 ([16, Lemma 2]). Let s = o + it where £ <o <2 and [t| > 1. Then

/ |Pm(z;s,1/)|2
\H

Lemma 3.3 ([16, Lemma 3]). For m,n >0, 0 > 1, we have

dady® m?
<L,k 7(0_ 1)2.
T2

——————dzdy e sl —1~—2 (254 1)
P.(z;5,V)P,(2;5+2,v =e(=2Y47 "7 n Zmnw(8) + R (5),
L Bt g = e(-4) s e T (5

where Ry, ., (8) is holomorphic in o > % and |Ru 5.0 (8)| <1 m .,k U_% in this region.
2
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Remark. Pribitkin proved a bound for Ry, , . (s) which is uniform in m and n in [34, Lemma 2].

With the help of Theorem 3.1, using an argument as in the proof of the prime number theorem (e.g. [40,
Chapter 18]), Goldfeld and Sarnak proved:

Theorem 3.4 ([16, Theorem 2]). Let

log |S(m,n,c,v)|

8 = limsup ,
c—00 10gC
then s ) e 1
m,n,c,V xoor T 8
Z - = Z 7j(m, n) 25, 1 + Or,m,np,k (1'3+6> )
cLz s;€(%,1)

where Tj(m,n) are defined as in Theorem 1.7.

In the next section, we generalize this bound to the vector-valued Kloosterman sums, which helps us in
Chapter 7.

3.2 Sums of vector-valued Kloosterman sums

In this section, we follow [16] to prove an asymptotic formula for sums of certain vector-valued Kloosterman
sums. Let p > 5 be a prime number. Let (k,pu) be either (Q,MP) r(— 2,;Tp) For n € Z and m € ZP~1,
recall the notations ct4 o, M40, agf()) and mi% for 1 < ¢ < p—1 introduced before Lemma 2.13 and recall the
Kloosterman sums defined in (2.43) and (2.46).

By Proposition 2.14, for every spectral parameter r; of \; = % + Tj2- in the discrete spectrum, we can pick
an orthonormal (under the inner product (2.25)) basis of L1 (To(p), ip,7;) denoted as OB(r;). For every

V(z;7;) € OB(r;), we have VO (z;r;) € E%(I‘O(]ﬂ) NT1(p), 7, ;) which has the Fourier expansion

V(Z)(Z Tj) - C(Z) 0 y E p] —5gnn+m,z7"] (47T|n+00‘y (n+00x) (37)
nez
N 0070

as in (3.5). Since a4 # 0, we have & (O y) = 0. The Fourier expansion of V(z;r;) at the cusp 0 is given by

4
(VOluao) (z:1) = Z PYIW g ir, (4710 Dly) e(nha). (3:8)

Here c( )(0 y) = 0 because a+0 750 foralll1</<p-—1.

Specially, for the case of g = 7, by the proof of Proposition 2.14, any V(z;7g) € E% (To(p), pp, o) satisties
VO (z;70) € E%(I‘o(pQ) NT1(p), 7y, m0). From (2.13), there exists a one-to-one correspondence between
Vi(z;rg) € E%(Fo(p),up,ro) and F € M%(Fo(pQ) NTi(p), ) by

VD (zir0) = yiF(2). (3.9)
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By (2.14), for the Fourier expansion of V(z;rg), since oz(fio >0 (2.35) and afg > 0 (2.36), we have

£
V(e) Z TO Z p() 5 17‘[)(47Tn+00y) (n+00x)’

N4 oo >0 ( )

3.10
¢ ¢
(VOlkoo)(z3m0) = Y P, 1, iro (47rn5r3)y) e(nfyr),
n{>0
+0

ie. plho(n) = pog(n) = 0if n < 0.

We will prove the following theorem in this section.

Theorem 3.5. Fiz an integer r > 0, apm'mep> 5 and let 1 < L, ¢ < p—1. Form € Z with m < 0,
m € ZP~1 with m < 0, and M—elenax {|m+0\} we have Myoo < 0 (see (2.35)), m 0 <0 forall £ (see
(2.36)), and the following results:

Sk (m, n, c, . :
mm6rity) 7 (mm) 5= + Ope (Jmnfat ) (3.11)
c<ziple 3<s;<% !
S(é) (L) . 2s5—1
3 0o (M3 0 i) _ 8 ) n)—— +0,. (Im n|3$3+s) , o (312)
a\/]’) 7,0,(L) 2. — 1
a<z: Los; <8 J
2 J=1
pla, [al]=L
S(L]) ([ae]) 2s;—1
Z oo (M 1 @, [ T) = (ZO)(m7 n) i + Op.e (|Mn|‘3 3+€) ) (3.13)
a\/i? Jy 25
a<z: Lcs <8 i
2 J=1
pta, [al)e>rd
where o
-1 (L [
O () — o1 [ §7 Pl | A2(n)  T(s; 4 senna ) T(2s; — 1)
Tiioo (M) = e(5) sin(*L) | sin(=) ' 725 =AM, ooy o] 1T (s5 — 1)
=1 ) P +oolb+oo J 4
(0) 1
. 3 Pioo(m)  T(sj 4 Fsgnnge)l(2s; —1)
Ta(,o),(L)(m(L)»”) = e(_%)P( 0 (m3) - - nly ; 4(L) : 1y’
sin(57) - w25 4Amign o |10 (s; — 1)
and T(Z)(m7 n) = g(l())(L) (m(L),n). Here all the sums on s; run over the exceptional eigenvalues

Lepr<
No=s;(1—s5) €[, L) of Ay on Li(Lo(p), up). The coefficients p( ) (n) and p(e) (m®) are the Fourier
coefficients of an eigenform V(z,r]) of A% in a orthonormal basis OB(r;) of L'é( o(p), p,7j), defined in
(3.7) and (3.8). The summation term corresponding to a single s; should be understood as the sum over all
V(z;r;) € OB(rj).

Remark. Here we have an important clarification of our notation. The notation r always means the integer
r > 0 which appears in the Kloosterman sum S(K) 2 (m) n,a, py;r), in 2, defined in (2.37), and in > a,r <
defined in (2.38). The notation r;, with subscript j > 0, is the spectral parameter of the eigenvalue \; = ; —i—r
of A on (To(p), ip)-

Corollary 3.6. With the same setting as Theorem 3.5, there exists a 6 > 0 such that for all 1 < L. £ <p—1,
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we have

SC(X?OO(ma n, ¢, :u’P)
Cc

—0

3 1
Lp [Mpocngool 22
c<z:plc

Z Ség(m(L)7nvaauP;T)
ay/p

|3 P
)

<p Mmoo Pa

a<z:
pta, [af]=L
L a
Z S()( (faf)) TL,(Z,‘LLP;?")
ay/p

Lp | Mngoo Bypz?

a<lz:
pta, [al)e>rd

Proof of Corollary 3.6. Granted Theorem 3.5, it suffices to determine the growth rate of p%(n) and p%(m(e)).
By the discussion in Proposition 2.14, these coefficients are also the Fourier coefficients of an eigenform of
Ay in a orthonormal basis of ﬁ%(FO(pQ) NT1(p), 7y, 7;). Then we can get the growth rate from the spaces of
scalar valued Maass eigenforms of A 1.

For 3 = Xy = so(1—s0), i.e. 59 =2, we know that L1 1 (Do(p 2YNT1(p), 7y, 1j) corresponds to holomorphic
modular forms M (To(p*) NT1(p), ) as in (3.9). Smce we have m o, < 0 and m < 0, by (3.9), we get
péezx)( ) =0 and p((fg)(m(f)) = 0. Thus, the term 2%~ = 22 for 59 = 3 is not contamed in each sum.

Since the exceptional eigenvalues of Ay on Ly (I'o(p YN T1(p), vy, ;) are discrete, there exists § > 0 such
that 2s; — 1 < 3 — ¢ for all s; € (3, 2). For these Jj, both p( ) (n) and p(g) (m®)) are O,(1). The corollary

follows. O

We generalize the method in [16] (to the vector-valued setting) to prove Theorem 3.5. Define the

Kloosterman-Selberg zeta functions as

) @) (. (L) .
0) . SOOOO(m7nvcnu ) 14 . S oo(m y 10, Gy [ 7T)
2% ()= Y kel 29y (s)= Y T pi’), (3.14)
e c<z:plc m®) n 4 a<z: pta, \/ﬁ
lall=L
and Z (goo . Z A OOO - . Recall the remark following Theorem 3.5 for the integer r > 0 involved

m,mn, + Lesra miE >,n +
in the zeta functions above.

We address the proof of (3.11) in the next subsection. The proof of (3.13) is in the subsequent subsection.

3.2.1 The cusp oo

Recall the notation (k,u) = (3,4p) or (—3,7,). For m > 0, we define the weight k& non-holomorphic

vector-valued Poincaré series as

p—1
1. _ y* e(misy2)er
U(zs kymop)i=> Y p(0) 2" AT sin(Z) (3.15)
{=1n~e DO\FO(p)
where v = (‘; Z) and the £ in my, is chosen depending on the sign of k. We also denote
g ok Y e(Mmioasy?)
U (28, k,m, p) := Z w(y) iy, )7k P Sm(ﬂ) er (3.16)
Y€l \To(p)
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as the part of the Poincaré series generated by ey.

Remark. Note the difference between U y)(2; s, k, m, 1) and U (z;8,k,m,p): Uy is defined only by the
terms associated to ey, while U® is the ¢-th entry of the vector U. All the components of U®) for
L:1<L#{<p—1 arezero, but this is not true for Uy.

The Poincaré series U(z;s,k,m,u) and U (2;s,k,m,u) converge absolutely and uniformly in any

compact subset of Res > 1 and are in L (To(p), ). To show the transformation law, e.g.
U(mzis, kom,p) = p(1)j(n,2)*0(zi8,k,m,p) - for 11 € To(p),

it suffices to show that for v1,v2 € T'o(p), we have

1) e m2) T = () ) T we(es v i z) 7k

) p(v2) i (ves 2) TR (v ) TR (e )R (e o) TR (3.17)

k

= pu(
= p(71)5 (7, 2)" - w(v2) i (e, 2) 7,

where we have used this trick: since wg(7y,v’) does not depend on z € H, we have
w(1,7) = (V7" 2) (v, A 2) (A 2) T8 for all " € SLy(Z), (3.18)
as well as the properties p(v; ) = pu(y1) =" and 5(v; *,712)F (71, 2)F = 1.

For Res > 1, we can compute the Fourier expansion of U(z; s, k, m, i) in the same way as the scalar-valued

case. The contribution from ¢ = 0 equals

) e(Miooz)ep.
P

When ¢ > 0, the contribution from a single ¢ equals

az+b+ta

Z Z Z a b+ta ( cz + d + te )k ys (m:too cz+d+tc> ¢
i e (e dtie) ez +d +tc] lez +d + te|?s sm(jf) ‘
ad=1 (mod c)

_ —k M4+ oo
_ pzl Z p(( e Z))‘le (miooa) Z z+ % +1 e(tasoo)y® © (_ (244 +t)> )
‘ FHEd) e e g

£=1 d (mod c)* tezZ SlIl(
ad=1 (mod c¢)
where we have used Zj_tdb =2 p(cz+d Definition 2.11, and the property (1.9) for v,,. If we denote
fel2) =3 (2 )" eltor) Mt oo
z) = el —
* Z\J= +1 2+ t]2s Ez+1))’

then fi(z)e(aroox) have period 1 and we get the following Fourier expansion by Poisson summation:

r= Y, Pemmett B, md g (x40 5) =e (220 )

nieo0 sin
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where (with the substitution x = yu)

. —k
u—+i —M+oo du
Bc, ,t Y, 8, k) = T - —t —_— 3.19
(C Mtooyltoor Y, S ) y/]R <|u+2|) € (c2y(u+z) iooyu> y2s(u2+1)s ( )

Therefore, the Fourier expansion of U(z; s, k, m, ) at the cusp oo is

pls

yPe(miosoz)er mi 2)

. ) (3.20)
0000, 1, €,
+ Y Z Z T’LLB(Ca M4oo, t:toov Y, S, k)e(tﬂ:oox)a
teZ p|c>0
where Seooo (M, 1, ¢, 1) is defined in (2.43).
Moreover, for Res > 1 and A = s(1 — s), we still have the recursion relation
U(Z, S, ka m, /’5) = _47Tmioo(8 - %)‘%)\ (U(Z7 s+ 1, ka m, :u)) s (321)
Uy (258, k,m, ) = —4Tmioo(s — g),@)\ (U(g)(z; s+ 1,k,m, ;L)) , (3.22)

where Zy = (A + )"t is the resolvent of Ay. Since % < Res < 1 implies A < i, we know that U(z; s, k,m, p)
and every Uy (z; s, k,m u) can be meromorphically continued to the half plane Re s > % with a finite number
of simple poles at s; for 1 5 <85 < %.

Recall that we choose Mio < 0 in the condition for Theorem 3.5, hence m < 0 and (1 — m)_ =

—M4oo > 0. Also recall that OB(r;) is a orthonormal basis of ﬁé(Fo(p),up,rj) and let V(z;7;) € OB(r;)

(see (3.7)). The residue of U(+;3,—%,1—m,[i,) at s = s; is then given by

Z fie;s <U( l—m,,LTp),V(grj)>V(z;rj).

s
VeOB(r;)

We are going to compute the inner product (deﬁned by (2.25)) by applying the Mellin transform (3.2). Note

that Wy Amlmiooly) € R and s; = 1 + ir; for r; €(0, 1). We get

SEN M { 00,17 (

(U(55,-5.1 —m,mw-;w

_ syt [ il ) (T ST M) 0e2) ) dady
‘/po<,,>\H ) g S )i 2 (e | %

el Lo (o) sin(

1_5F(S ) s+ SJ B 1
F(S—l— sin(Z£)
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The residue of U(+;5, —%, 1 —m,fip) at s = s; is then

Res <U( Simg: 1 mvlTp)?V('?Tj)> V(7))
VEOB(r;)

2 N (3.23)
= Y rlmis))” (25 = (ot V(z1;).

VEOB(r;) sj+ 1) i= sin( %)

The following lemma still holds as [16, Lemma 1] because the proofs are essentially the same except for
the difference of scalar-valued Petersson inner product and the vector-valued one in (2.25). We omit the
proof here.

Lemma 3.7. Let s = o +it, (k,p) = (3,p1p) or (—%,71,) and m > 0. For 3 <o <2 and |t| > 1 we have

™m
<U(';Sak7m7u)aU(';57kama /u‘)> <<p 1\2°
(c—3)
m
<U(4)(-;s,k,m, /’L)7U(Z)<a S?k7m7/’(’)> <<P (O’ B 1)2
2

The following useful equation follows from [41, (3.384.9)]: for y > 0, 8 # 0, k = :I:%, Res > %, we have

N\ —k ) _k s—1
[ 0T arongy = TGO Dy i) (320
(z241)572 ['(s 4 5 sgnj3) 258053
In the next lemma we compute the inner product of two Poincaré series. Recall the definition in (3.14).

Lemma 3.8. Suppose that mio <0 andlet1 <l <p—1. Then

Z(ﬁ)ooo (s) is meromorphic in Res > %
m,n,+

with at most a finite number of simple poles in (%, 1). Moreover, when Res > %, for nyoo > 0 we have

<U(7§a %71 mvm)7U(€)(7§+27%7naM1))>

e(—3) I'(2s+1) 0 [M 4 oMt ool
= 7 so00 Op| ————— |,
45“7””& T(s+ Dr(s+75) oo ()4 00\ =

and for ny. < 0 we have

<U(7§a _%7 1- mam% U(f)(7 s+ 27 _%a 1- nvm)>

o e(-d) F@2s+1) <|m+oon+oo|)
- oo (8) +Op | ———7— |-

T BT alngn T(s— DI(s+3) mocr -1

2

Proof. We compute similarly as [16, Lemma 2] with the following properties: ju,(v) is unitary, p,(y~) =

pp(y)~t, and j(y7 1, z)%j(fy, 7_12)% = 1. For the first equality in the following computation, we write U to
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denote the whole first term in the inner product. Suppose that Re so > Re sy > % When n4 o, > 0, we have

<U(7§1; _%7 1- mvﬂip)vU(Z)(a57 %7naup)>

H
1. _1 =€(Nyooy?) — dxdy
/ Z /LP(’Y) 1] (77 Z) 2 (Im 'YZ) 2 Wt[ U 5
Fo(p)\H ,Yeroo\ro(p) Sin Yy
. 1 N1 —2TN4 ooy T
:/ Z J(n T 2) 2y e(=noo) ———— ¢ 1p(7)
Lo(\H 1 \To(p) sin(77)
— TVl N E — 1 dxdy
'Mp(’y )3y ,Z)2U(z;51,—§71 m Mp) )2
s il — dxd
:/ y?e(—n_koox)ﬁe}U(z;sl,—%,1— m, lp) y.
oo \H sin(7°) Y2
Then we use the Fourier expansion (3.20) with (2.44) to continue:
Séé)oo(m,n,c,,u ) o 2 dy
= Z 2 . / y52_516_ ﬂ-n+xyB(ca(1_m)—ooa(l—n)—ooayvia_%)i
ce51 0 Y
ple>0
52 51 ,—2TN ooy w4 —% d]?dy ,
_Z(Q’OC / / - e(—Ngootiy) — + R'Goc (51,5
mn+ u2+1 1 ‘u+7’| ( * y) Yy m,n,+( ! 2)
6( 8 (281 + ].) () ()
- Z [e'ele’s) —+ R ocooco (S1,52),
4S—i_17.r’r"4r00 F(Sl + Z)F(Sl + Z) mﬂ%‘i‘( ) m,n +( ! 2)

where

_1

rRY (s1,82) =Z (s yr e P (i)
1,92) — 1 .
ok w?°°° (u2 + 1) lu + i

ce(—nisouy) (e (MW) _ 1) dzdy

Ay(u? +1) y
— Z(e) 19) |m+00n+00| -0 |m+00n+00| ,
m0?7$?+(81) 02(0'1— é) O’l—%

which is holomorphic when o; > % The lemma follows by setting so = s1 + 2.

Similarly, when n, . < 0 we have

<U(’;§13 7%; 1- m7ﬂ’7p)7 U(@)(';‘SQ? 7%7 1- naﬂip)>

s TN ooy — dzdy
:/ Y2 e(—Npoo®) ————¢; U(2151, — 5,1 — m, Jip) —5—
oo \H sin(7) y
6(7%)7r1+51752 F(SQ — Sl)F(Sg + 51 — 1) ® 0
- : zZ s1)+ R 81,8
Tt T - DGy 1 1) o O R v
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where

Sgo)oo m n,c 52 51627rn+ooy U+Z _%
g o 3 S [ [0 ()

2s
m,mn, iy om0 ce°1 |’LL + ’L|
—My oo ] dxd
e(—noouy) ( <?+( o B“) - 1) zdy
cylu Y
‘
_ Z Sc(x))oo(m,n, G Mp)O M4 00Tt oo | -0 M4 00Tt oo |
251 (o — 1) o1 — 1 '
ple>0 2 2
The lemma follows by setting so = 57 + 2. O

Combining Lemma 3.7 and Lemma 3.8, we have the following proposition.

Proposition 3.9. For my <0, s=0+1it, 0 > % and |t| — oo, we have

m n 35%
78 (s) <p M

m,n,+ g — 5

Now we can prove the first case of Theorem 3.5.

Proof of (3.11) in Theorem 3.5. Denote s = o+it. Fix any € > 0, by Proposition 3.9, Z(Z)

anr

(5) <pe C(1+¢)

for 0 = 1 + ¢, and the Phragmén-Lindel6f principle, we have

A (H2) <pe |m+oon+oo|3\t|%_%+5 for0<e<o<1l+4e. (3.25)
m,n,+
Then following the argument of [16, §3], by the proof of the prime number theorem as in [40, Chapter 18], we

have
1+iT

)
o000 »TEY ]‘
ZS (myn, e, mp) _ / 79 (L
1

c 2 Ji_ir mont

x5 £L'1+€
Y ds+ O oNtool? .
s 40 (I P2 )

ple<w

By Lemma 3.8, the function Z(Q,oo (%) has at most a finite number of simple poles at 2s; — 1 € (0,1)
m,n,+

(note that we are using 1£* rather than s), where \; = s;(1 — s;) < 1 are the discrete eigenvalues of Ay on
Ly (To(p), ptp). Shifting the line of integration above to Res = e such that 2s; — 1 > ¢ for all \; < %, with
the help of (3.25) we obtain

25_7’ -1

Séf;)oo(man7ca :up) (£) 1+s z

) = 2 Bes Ze (159
C N 3 s=2s;—1 m,n,+ 2Sj -1
ple<w 1<s;<3

1
+ O(‘m+oon+00|3x3+s)v

where we have chosen T = z3 .
For the residue, by Lemma 3.8, it suffices to compute the residue of the two inner products in that lemma.
Let OB(r;) be an orthonormal basis of E% (To(p), up) and let V(z;7;) € OB(r;). When nyo > 0, combining
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Lemma 3.8 and (3.23), we are left to compute the following inner product using (3.2):

e 2mntooy T dxdy
A% U +2,4 / SJ'“fooig i) ——
< (575), Uy (555 2 nﬂp> \To(n) Y e(—Ntoo) Sm(ﬂg) (z375) Y2 520
(0 :
2s: +1
= (4mn400) " st Dae 7(rz) i +7)'
sin(%7) T'(s; + %)
Similarly, when n4 ., < 0 we compute:
2™ +ooY T dxdy
V';r'aU ,S+2,_l,1_n,7>:/ y8j+2e Nl ZVZ;T.'
< (573), U (55 2 ip) To(e) (—Ntoo) sm(”e) (z575) Y2 .
3.27
‘
(i1 Pioe () T2 + 1)
= (4m|nqool) ™ 0 9 -
Combining Lemma 3.8 with (3.23), (3.26) and (3.27), we get
© Ll m) | A2m) s, + Lsgnno )T (2s; — 1)
Res Z'oo ()= > e(}) Z o e — - (3.28)
s=s; m.n,+ VeOB(r)) = sin(%) sin(%7) w2 [4M 4 00Ny 00|11 T (55 — 7)
and finish the proof. O

3.2.2 The cusp 0

Recall from (1.10) that 'y is the stabilizer of the cusp 0 in T'g(p) and o¢ = (\%
of the cusp 0. They satisfy the property oy 'Tgog = s, where T'y, = {£(} ) : n € Z} is the stabilizer of

_1é‘/ﬁ) is the scaling matrix

the cusp oo.

Fix an integer 7 > 0. Recall the definition of z, in (2.37). For (k,p) = (%, p,) or (—3,7,), we take
m = (m®, ... m®-D)T ¢ ZP=1 for cach £. Recall the definition of o) and m{) in (2.36) and of > r < in
(2.38). We write m > 0 (resp. m < 0) if every entry m() > 0 (resp. every entry m¥) < 0).

For m > 0, we define

UO([(ZSkm y s T )

> ) wk(ogt)i(og 1, 2) (I yz) e (miéao ’YZ> e, ifLe>T <, (3.29)
v€To\To(p)
Oeg, otherwise, never used.

We also define

Uo(z; s, k,m, u,r Z Up,0)(2; 8, k, m© p,r T). (3.30)
terra

Note that Uy (¢)(2; s, k,m®, u,r) is different from U(()e)(z; s, k,m, p,r), where Uéz)(z; s, k,m, p,r) is defined
to have the same ¢-th entry as Ug(z;s, k,m, p,r) but has 0 in the other entries. The Poincaré series
Uo(z; s, k,m, p,r) and every Uo, o) (z;s,k,m(l),,u,r) converge absolutely and uniformly in any compact

subset of Res > 1, and are in L;(Ty(p), ). To show the transformation law, e.g.
UO(’ylZ; S, ka m, i, T) = ,U('}/l)]('}/l, Z)kUO(Zv S kv m, (i, T) for IS Fo(p)v
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it suffices to show that for v1,v2 € T'o(p), we have

vy )7 we(og ey Dilog e mz) T

1

:(H 2) 1 ( ANt 1)) wy (Y2, " )
~j(og i 22) i (e mz) (o te h m2) (g e me) (331)
= p(y)u(v2) (v 2) i ) R o)k i og t vez) (e e T
= p()i(n,2)" - u(r2) "Hi(og s v22) (e, 2) T
= ()i (71, 2)F - p(2) T rwr(og t72)0 (0 2, 2) 7,

where we have used the trick in (3.18), u(y7 ") = (1) =" and j(v7*,712)%5 (71, 2)F = 1.
Recall the scaling matrices oy = (\% _1éﬁ> and 0., = I. We have the following double coset decompo-
sition by [38, (2.32)]:

c d_
05 ' To(p)ose =05 ' Top) = | ) | Tw (_aff@ —f/ﬁ) | (3.32)

a>0d (mod a)*
pfa

Then v, € Ty \ Ty(p) & 72 = 0'61’)/1 €ls \0611"0 (p) and all choices of 72 can be described as
Yo €{og (28)(§4): a>0, pta, b(moda)*, t€Z}

Recall (2.45), Definition 2.11, (2.35) and the property (1.9) for v,,. We have

pose (7) = ploom)wi(og ', 007)  and  poso(0g " (4 5) (1)) = pose(og ' (& 5))e(—tatoo).

We also have

wilog 105 7.2 = 3.2 (o5 12)t = e(—E)(EE)E fory = (24).a > 0 and ¢ > 0.
To compute the Fourier expansion of Ug(z; s, k, m, u, ) when Res > 1, we have

Uo(Z;S,k,m,,LhT)
T T e () e
o0 — — 2s
Pl £ | —az — b lay/pz + by/D|
- v#_ v
(T 3s)

Y€l \og ' To(p)

_ -1 —k ye mio(cx4d)
o " (21) oy (R
Z Z Z Ze(taioo) | —2z—b —¢ laz + b+ ta|?s ¢

teprga>0  bla) p tez S
pfa 0<(‘<pa ple
ad—bc=1
Note that % = —p% — m and p(e,d + te, 4, p) = p(e,d, £,p) by (2.34) for all £ and ¢. Recall that

the matrix fip0 (0 (¢ 2))_1 maps the entry at [af] to ¢ and v, ((¢ Zﬁf;)) =v,((25))e(—). Then when
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¢ ¢ a,r <, the contribution from a single a to the ¢-th entry is zero; when ¢ €> a,r <, such contribution is

CE S et e e ()
psa25 b (mod a)* 0 cd pa o]
0<c<pa, plc
s.t.adzibcp:ll

—k a
z+ g +t y® —mgiog])
~Ze(taioo) . 0 5 5 T
= |z 4 2 + 1 |z 4 2 +t]* \pa?(z+ 7 +1)
Sé@o(m([aé])7t7a>ﬂ; )

2T

= ye(-%) Blaypmis? tiv,y, s, k)e(trnca).
Here we get the last step in the same way as the steps before (3.19). The Fourier expansion of Ug(z; s, k, m, p, )
for Res > 1 is then

SL (m1@D) ¢, a, ;7 . 3.33
—pe-H Y Y ST h G ) g D by s Reltiner) B

a>0/¢le>a,rd teEZ
pfa

where S(()i)o(m([am,t, ¢, p;r) is defined in (2.47).
Similarly, for L €> r <1, we can compute the Fourier expansion of Uy ((2; s, k, mE) . r) (3.29) and get

¢

UE)%L) (Z7 S, ka m(L)7 :U/7 T)
: St (m®, 1, a, i 3.34
Syl Y SRl ") Blayp.mE) troe, .5, K)e(t o). (3:34)

a>0:  teZ \f
pta, [al]=L
If Res > 1 and A = s(1 — s) is an eigenvalue of Ay, we have the recurrence relation

Up, o) (2, k, m® pu,r) = —4’/Tm§f())%)\U07(g)(Z; s+ 1,k mO pur) (3.35)
Uq(z; s, k,m, p,r) = —4m Z mgf%%)\UO,([)(Z; s+ 1, k7m(€),/1,77‘) (3.36)

Le>rd

for #y = (Ap + X\)71. Then Ug(z;s,k, m, u,7) and every Uy, ) (2; 8, k, m® |y, r) can be meromorphically
continued to the half plane Res > % except at most a finite number of simple poles at s = s; with 1 < s; < 1.
Let OB(r;) be an orthonormal basis of /j% (To(p), pp, ;) and let V(z;7;) € OB(r;) (see (3.8)). For m <0

then 1 — m > 0), the residue of Ug(2;3, —1,1 — m,7i,,7) at s = s; is given by
2 P j

> Res (Up(is —4. 1= miipr). V(sry)) Vi), (3.37)

VeOB(rj)

We will compute the inner product below and will finally get (3.40). Recall (3.29) for the definition of Uy, ().
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When ¢ €>> r <1, we use V to abbreviate the second term in the inner product V(-;r;) and get

<U0,(Z)(';§v _%7 1- mvljfipa T)vv(a /rj)>
dxdy

-/ VIS ) ey o i ) e e - m e

\H v€To\TLo(p)

£)
= > / V(ao2i75)"j (00, 2) by e(m{)e?™ Ve,
a,

~ETo\To(p) 0 ’Y(FO(P \H)

o d
:/ ye 2mm {3y y/(V|;O’0)(Z;T’j)He(mEf()):l})Bgdl‘,
0 v e 2

dxdy
2

where we have used the following properties: p1,(7) is unitary, j(M,z)j(M 1, Mz) =1 for M € SLy(R), and
the trick in (3.18):

. _ 1 _ . _ _ 1
iy o02) 2w s (og " )iy, v ooz) 2

1
2
1

. _ 1. _ 1. _ _ _ 1. _ _ 1, _ _ _
= j(v " 002) 25 (v, 7 ro0z) " 2j(0g vy to0z) T2 i(0g tyy ta02) 2 (0 Ty, v tonz) T

-

- 1 1
= j(og ',002) "% = j(00,2)%.
We have also used the property that for every cusp a of T,

U o 'y(T\H) =T \H, up to a zero-measure set.
’)’GFa\F

Then we can apply (3.2) to get

= — 7 T a1 2mm® ¢ dy
<UO,(€)(’; S, 7%7 1-— m(g)a ,U,p,T),V( )> = p_s,)( S ))/0 Y 162 +0yW—%,ir]‘ (47T|m(+())|y) —

I'(s—s;)I(s+s; — 1)
I(s+1)

. (3.38)
l ¢ _
= O (m @) (amm )

The residue of Uy (4)(2;3, —%, 1 —m, @y, r) at s = s; is then given by the following sum combining (3.38):

S Res (U5 41— mO, i), V(i) ) Viziry). (3.39)

5=8;
VeOB(r;)

Summing up for £ €> r <, we get

I'(s—s;)I(s+s; — 1).

— _— Zi ! -
<U0(Z; S, —3,1— m,up,f)>V(';7“j)> = > plam®)@r|mig))* T(s+ 1)
4

lexrdg

(3.40)

The following lemma still holds as in [16, Lemma 1] because the proofs are essentially the same except for
the difference of the scalar-valued Petersson inner product and the vector-valued one in (2.25). We omit the
proof here. Recall (3.30), (3.29) and (3.16).
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Lemma 3.10. Let s =0 + it with 3 <o <2, |t| > 1, and M = max |m+0| We have

leprg
M2
<Uo(';s,k,m,u,r),UO(-;s7k,m,,u,r)> <p T
"o 17
‘ [m{s 2
<UO,(Z)(';57kam s s T ) UO (4)( s,k‘,m( )?/'l/7r)> <p @

Recall (3.14) for our Kloosterman-Selberg zeta functions. We have the following lemma.

Lemma 3.11. Letm <0,1 </ L<p—1, and Res=0 > % Then

Z((fio;r (s) and Z(%OO . (s) are meromorphic in Res > 1
m,n,+ mE) ot

with at most a finite number of simple poles in (%, 1). Moreover, when nyo > 0, we have

<UO,(L)(';§7 7%3 1- m(L),,ufipaT), U(l)(v§+ 2, %,naup,r)>

(€)
[SSHA ( ) +R oo;r (5)7
48+17rn+ooF(s + (s + 1) m?L)”n’+ <OL> ot

<U0(';§7 _%a 1- m7/“”7p7 T)a U(g)(';§—|- 2, %,’I’L,Mp,’l")>

e(3)T(2s +1) ‘
:4s+1 28F lr 7 Z(O<)>o;r( )+R(02)or( ),
TN o (s+ 4) (s+ 4) m,n,+ m,n,+

and when ny. < 0, we have

<UO,(L)(';§7 _%7 1- m(L)7/’(‘7par>7 U(Z)(7 s+ 27 _%a 1- n7/1/7p7 T)>

e(HIr'(2s+1) y ’
= s+1 . 2 1 9 Z( )Ooo;r (S) + R( )Ooo;r (8)7
4 7T|n+oo| F(S o Z)F(s + Z) m(L),n,-i- m(L)7n,+

<UO(';§a 7%7 1- m,‘LLip,T), U(@)(vs + 2’ 7%7 1- n?,uipar)>

e(g)l(2s +1) ¢
s+1 2 (Oz)xur()_'_R(Ooor()
4 * 7T|n+00‘ F(S - 7)1—‘(8"" ) mn+ mn+

Here both R(ZOOO . (8) and RY) omo:r (8) are holomorphic in o > 5 and

m(L),n + m,n,+
(L)
¢ [myg ool ¢ | Mo
R( )Ooo;r (S) <<I) -~ 100 ) R(O)oo;r (3) <<P (130 .
m ) ot 0—3 m,n,+ 0—3

Proof. Set Re Sg = 092 > Resy = 01 > % We only prove the formulas for the inner products involving

Uo,)(3,—5,1— mD) o Hp,T), while the other two formulas for Ug(+;3, —
onLGDTQandbyM—Lmax |m |

%, 1 —m,,,r) follow by summing

After we prove the formulas for these inner products, the meromorphic property of the Kloosterman-Selberg
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zeta functions follows directly from the meromorphic continuation (3.35) and (3.36).

We start with the first inner product using unfolding. Here U (1) abbreviates the first term in the inner
product. Recall (3.29) and (3.16). We have

<U0,(L)(';§a _%7m(L)a,U/7p7 7‘)’ U(@)(757 %7nvup7r)>
H

1. 1 = e(Nyooy”
/ Z 1p(7) 13 (v, 2) 72 (Imvyz) 27<.+M )ee Uo,(1)
Lo(P\H \ yeroo\To(p) Sln(;)

dxdy
2

dxdy

y?

T
o _on e(—niooT)e
/1; ( )\Hywe 2Nt ooy ( +ﬂ-g)) £ UO,(L)(Z;Slv_%am(L)7/1’p7r)
o(p

sin(7

T'oo\To(p)

Then we apply the Fourier expansion of Uy (r,(+; 51, —%, m) ;. 7) in (3.34) with (3.24) to continue:

4 — )
_ e(fl) S(go)o(]‘ - m(L), 1-— n,a, /'LP) / y52781716727rn+00y
! a>0: pta, (a\/f))2sl 0

laf]=L

/(u—i—i)_ée —m(fo)(u-i-i)_n " du p
w \Jut ] pay(u? +1) ) s
e(—%)41*5271'1+51752 [(s2+s1 — 1)(s2 — 1) (t

= ' 2 e (1) + R (s1,52).

nis’™ T(s1+ )T(s2 — 1) ) gy m® oy
Here
¢
R(e) _ _3 S(()O)o(m(L)’n7aﬂu‘P) > s2—s1—1_—2TNn {0y
Qoosr (51’ 52) - 6( 8) ( )231 y €
m(L),nH- a>0:pta, a\/ﬁ 0

lall=L

AN (L) )
U+ 2 —miq(u+1) du
A —foo ) 1)
/R <|u+z|> e (—niooyu) (e <pa2y(u2 1) (u2 + 1) Y
L L
- 3 S, (el ) o, ()
p p

e (PP p?(o1—3))
laf]=L

and is holomorphic in the region Res; > % with s3 = s; + 2. The last step is by the trivial bound

Sé?o (m(L)7 n,a, /’(’P) <a.

Then we deal with the case ni < 0. As before, we have

<UO,(L)(';§7 _%7 1- m(L)vmv T)u U([)(a 52, _%7 1- ’I’L,ﬁp,'f’)>

e(—Nitoo?) T — ——dxdy
= y*? ————¢; Uy 1y (51, —5,1 —mB) a5, 7)
/1“00\151 sin( p‘f) ¢ (L) 2 P 2
e(=2)4ls2qplts1=52 Py 45, — 1) (s9 — s , ¢
= : S$2—8 ) ( - : 1 ) ( - 1 I)Z( 2)00;7‘ (81)+R( )Ooo;r (81,82).
[Mpoof®27%1 [(s1 - Z)F(SQ + Z) m) n,+ m) n,+

m(L)n co . . .
We still have that R(Z)Ooo;r (s1,82) = O, (“’f) and is holomorphic for o7 > % and s9 = s; + 2. This

o1—7%
m) n,+
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finishes the proof.
O

The following proposition follows directly from Lemma 3.11, Cauchy-Schwarz, Lemma 3.10 and Lemma 3.7.

Note that the norms involving s+ 2 and s+ 2 have 0 42 — % > 2 and do not contribute to the denominator.

Proposition 3.12. Let m <0, M = max \m%\ and s = o + it with Res = o > 3. When [t| — oo, we
(>

have the growth condition

(L) 341 34 L
e oo z My Pl
Z( z)oo;’r (8) <<P - 1 and Z(Ogo;r (S) <<P +
m@ o+ 0~ 3 m,n,+ 2

Then we can prove the remaining bounds (3.12) and (3.13) in Theorem 3.5.

Proof of (3.12) and (3.13) in Theorem 3.5. Take any small ¢ > 0. Since Z(Z)Ooo;r (s) <c ¢(1+¢) for

m(L),n,+
Res =1+ ¢, by the Phragmén-Lindel6f principle, we have
2 (1F2) <o Im P o P25 for0<e<o<1+e (3.41)
m) i+

Following the similar step after (3.25), by the proof of prime number theorem as in [40, Chapter 18], we have

i E L
S(()l;)o(m(L),n,a,up) _ 1 /1+ ’ 70 (s+1)£d3 +0 M (3.42)
a\/p 2mi J1 7 o 20 T . .

a>0: m(L),n,+
pta, [al]=L

By Lemma 3.11, the function z" (1££) has at most a finite number of simple poles at 2s; — 1 € (0,1)

Qoo;r 2
m) o+
(note that we are using 1'55 rather than s), where \; = s5;(1 — ;) < % are the discrete eigenvalues of A1 on
2

L1 (To(p), up). Shifting the line of integration above to Res =& (¢ —iT — € +47T') such that 2s; — 1 > ¢ for

all \; < I, with the help of (3.41) we obtain

s xQSj—l

Coe
s;—1

(£)
LD nopm) 5~ e g
a>0: a\/[) s .<§s:25j71 m(of)o;:—&-
pta, [al]=L A o

+O(m ) ny oo Prste),

where we have chosen T' = x5

For the residues, by Lemma 3.11, it suffices to compute the residue of the first and third inner products
in that lemma. Let OB(r;) be an orthonormal basis of [:% (To(p), 1p) and let V(z;r;) € OB(r;). Combining
Lemma 3.11, (3.39), (3.26), and (3.27), the proof of (3.12) follows.

The proof of (3.13) follows by summing up on L €> r < and by M = nax. |mS_LO)|.

3.2.3 Convergence

In this subsection we show the growth rates and convergence properties of sums of Kloosterman sums. We

will need these estimates in Chapter 7.
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Proposition 3.13. With the same setting as Theorem 3.5, we have that all the following sums are convergent
with bound

¢ 1
S<(>0)<>O(mana C, /’Liﬂ)% (47T|m+oon+oo| ’ > <<p ‘eroonJroo 47
c C

1
C>AT My soNfoo]| 2
ple

1
.
s

* Ség(m(L)vnaa)/u’p) 47T|ms_[6)n+oo|% (L) 4
e e G BT
a>47r‘m(+%)n+oc’% -
pla, [a€]=L
1
() ¥ o0 (a) o n o2
S ,a, 4 ’
Z Z m+0 Ooo(m ,n,a F‘p)/// 7T|m+0 n+oo‘ <<p |Mn+00|4'
|} teparg Moo b ‘

a>4r|Mny o
pta,

Here . is either the Bessel function I% or J%.

Proof. The proof is similar to the scalar-valued case. We use the properties of Bessel functions: by [31,
(10.14.4)], |Jo(x)| <q * for > 0 and a > —3, and by [31, (10.30.1)], for 0 < z < 3,

I(z) <ap x* for a > —1.

Let ¢ 1= 47|m oony 00| 2. We have ¢ > Z by 4o = 57 in (2.35). When ¢t > ¢, we have 0 < % < 1, hence by
31, (10.29.1), (10.6.1)], we get

dr,(2)=_2 ¢ ¢ S B L
d; (2)=_2 2\ g (2 b3y ght < pbe
()= (11 (D) -y () bt rsii cait. o

By Corollary 3.6, we write

Séﬁ)oo(m7nacalj/p> 3, .15
SC(z) := Z - Lp | MtpooNtool’x27°.

ple<w

By partial integration, for T > ¢ we have

SC(X?OO (m7 TL, C7 .up)

c

oiesT (7)< (F)som] + Lewscon+ /:scuw%tzdt

ple (3.45)
1
€ [Myoniool 2 (14 T7°)

< ‘m+oon+oo|4'

47



For Y > X > ¢, we also have

Stobo(m,m, ¢, o) (f) < ‘J// (i) SC(Y) — .4 (;) SC(X)‘ +

c

Y 1 3
/ SC(t)gdt—dat
X

X<e<Y
ple

(3.46)
3,1 [y _
< |m+oon+oo\3¢2 ’Y - X 5{ .
The above estimate (3.46) proves the convergence by Cauchy’s criterion, so we are able to let T — oo in

(3.45). We have proved the first bound of the proposition.
Again by Corollary 3.6, we write

L 1_
<p |mgr0)n+00|31’2 .

S(?O m) n,a,
SA(I) — Z 0 ( - P)
a<z: \/I)

pfa, [al]=L

Let ¢ := 47r|erL0)n+oo|%. A similar application of the partial sum concludes the second formula. The third
formula follows from summing up L €> r < and by M = max \mS_LO) |. Here we can re-order the sum because
€pr<

the convergence can be easily derived by separating the partial sum into # > r < parts. O

For 3> 0, let I'(o; B) := f;o t*~le~tdt be the incomplete Gamma function. We have I'(a; z) ~ 2% 1e™®
when x — oo.

Proposition 3.14. With the same setting as Proposition 3.13, we have

Z S(gf))oc(m7n7c7 lj‘p)]—
C

=

(47T|T’"L+c>on+00|é

1
5 4m|lm n 2
; ) Kp Mooy oo| Pt IMsoonreel

¢>0:ple

.S'((,?oo(m7 N, C, fp) AT M4 o Npoo| 2
3 L <p [Moontiool’,

C C
¢>0:ple
1
al]) |2 V4 a al 1 B
mSEO D4 S(gol(m([ E])’nVG"luP)I 47T|m$0])n+oo|2 M 5 an|Mny |}
Z Z n a 1 o <p [Mnjoo|e ,
a>0(lE>a,rd oo VP VP
pta
1
al 1 Y/ a al 1
> 3 [ e, (sl
1 P oof -
aTOZGDa,TQ Moo a\/ﬁ ’ a\/ﬁ
pta
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Hence, by denoting q = e(z) with y = Im z > 0, the following series converge:

1 Y/ 1
Z Moo ‘4 Z Sc(>o)oo(m7nvca Hp)h Am|myoonyoo? g™+,
‘ol oo . c 2 c
N oo ¢>0:plc
1 o) 1
m+ 4 SOOOO(m7nvcalu’ ) 47T|m+ TL+ ‘2 n
> moo‘ > pa— || PG 4rlnsocly)g™ ],
Nt oo <0 > ¢>0:plc
1
al]) |4 Y4 a al 1
Z Z Z mﬂo D S(()O)o(m([ E])vn, ahup) I (47T|m$0 ])n+oo| 2 ) ‘qn+w|
N4oo>0 [a>0: pla, Moo a\/f) ’ ¢
Le>a,r
1
([al]) |1 () a ([at]) 1
I S e ] G | LIPS
1 29 .
N400<0 [a>0: pfa, Moo a\/ﬁ ’ ¢
Le>a,r

Proof. We first prove the formulas involving /1. We refer to [31, (10.30.4)] that Ig(%) < e?(t/¢p)? when
t < ¢. For the first formula, we let ¢ = 47|m oonyos|? and use partial summation with [31, (10.29.1)] to get

Ség)oo(m,n,c, :U/p)I 47T‘m+oon+00|%
1
c 2 c

3 _
) < |m+oon+oo|3e¢¢2 '« |m+oon+oo|5e¢.
1<e<¢:ple

We combine this with Proposition 3.13 to get the desired bound. Since |e(n402)| = e72™+<¥ and considering
that the inner sum grows at a rate of eo("ir/oi), the fifth formula is clear.

To prove the third formula, we start by choosing a fixed L €r> r <t. Then we set ¢ = 47r|erL0)n+oo|% and
apply the second formula from Corollary 3.6. Adding for all L € r <, we get the desired bounds here. The
seventh formula follows from the same reason as the fifth one.

For the formulas involving J 1 we apply (3.44) and get the similar conclusion without the exponential

growth term e?. Since n, ., < 0, we have
|F(%> 47T‘n+oo‘y)€(n+ooz)| < 6727T|n+oo|y

and still get the convergence as y > 0. O

Remark. The step of repeating the selection of L and then summing up on L €> r < is necessary. This is

because mﬂ?f“ changes when a varies, but it remains constant when we specify [af] = L.
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Chapter 4

Sums of Kloosterman sums: uniform

bounds, mixed-sign case

In Chapter 4 and Chapter 5 we will prove Theorem 1.7. Since the trace formula has different settings in the
mixed-sign case mn < 0 and the same-sign case mn > 0, we separate the two chapters. The proof in this
chapter is contained in [14].

Before we prove Theorem 1.7, we need a few preparations.

4.1 Examples of admissible multipliers and a lower bound of the

spectrum

Suppose N is a positive integer. In this section we are going to prove the following proposition and conclude

a lower bound for the exceptional spectrum in certain cases.

Proposition 4.1. If v = xvg or v = xv, where X is a real character modulo N, then v and its conjugate are
admissible, i.e. satisfy the requirements in Definition 1.6. If v is the multiplier for a weight :I:% eta-quotient,
then v satisfies the condition (1) in Definition 1.6.

We will verify this proposition in the next subsection while we only prove the case for weight % The
proof for weight —% case with respect to the conjugate of each multiplier follows from the same process. For

simplicity we recall Dirichlet’s lemma:

Lemma 4.2. Every real character x modulo N can be expressed in the form x(y) = (%) where d = 0,1 (mod 4)

depends on x and N. Every primitive real character can be expressed in the form

) = (2),

where D is a fundamental discriminant and |D| equals the conductor of x.

4.1.1 Proof of Proposition 4.1

Suppose x is a quadratic character modulo N. If v = vy, write x = (Q)IN/D where D is a fundamental
discriminant. Since v is assumed to be a weight 2 multiplier, we have x(—1) = 1so D > 0. If D =0 (mod 4),
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|[=4D|

we are done; if D =1 (mod 4), then —4D is fundamental and v equals ( Jvp on I'g(N). Now we have
proved condition (1) for v = yvp.

The individual Weil bound is known by Blomer [42, (2.15)] that for 4|N|c, we have
[S(m,n,c,v)| < ag(c)(m,n,c)%c%,

where v = 1y or Yvy for a Dirichlet character 1) modulo N satisfying 1/(—1) = 1. This proves condition (2)
for v = xvp.
For v = xv,,, we have a map to /:'% (576N, (£2)xvp):

Lemma 4.3. For v = xv, and for each r, the map z — 24z gives an injection

Li(N,v,r) = EN% (576N, (£2)xvp,7) .

1
2
Proof. The proof follows from a similar process as [12, Lemma 3.2] by setting 7' = (C Joa 2;”’) when
v=1(2%) €[o(576N), ¢ > 0. For any f € E%(N, v,r), define

9(2) = 1242) = 113 (V2" 5 ) ) -

Observe that

o (V24 0
alyy =7 (V5" vms)-

One can check that (xv,)(7") = x(d)(})ve(7) by (1.19) with the help of the identities e(15%) = (2)e4 and
2 = (=) for odd d. O

Now (12)yvy is a weight § multiplier on I'o(M) =T'o(576N) and x(—1) = 1. As in the beginning of this

subsection, (12)yvy equals (2 )vg on Ty(M) for some D’ fundamental. Finally we pick (2 )vp or (|74.D/‘ Jg.

Although we only need an average bound, we have an individual Weil bound for v = xu,.

Lemma 4.4. Suppose that v = v, where 4 is a Dirichlet character modulo q with q|N|c. Write
24m — 23 = a®>M; with M, square-free. Then we have

[N

1S(m,n, e, v)| < g3 oo((a, ¢))oo(c)v/e - ((24m — 23)(24n — 23),¢)2 .

Proof. Set r = N/q and s = ¢/N. By (1.11) we have a,, = a,, so i =n — 5. We have

S(m,n,c,v)

I
<
[i=}

S
|
f\
2
(9]
Y

=1
S
+
It
IS8
N—

d (mod ¢)* ¢
q q ~ ~
_ <Z wq(z)Zg(h(d—f)))ym)e(mﬁnd)
d (mod c¢)* \£=1 q h=1 q ¢
q q ~ ~
—25 w03 (-2 e (L),
q =1 h=1 4 d (mod ¢)* ¢

The proof now follows from the Weil-type bound for S(m,n,c,v,). By [11, Proposition 2.1] we see that

1S(m,n, e, v)| < qoo((, ¢))oo(c)v/e - max (MyNa,c)?,
1<h<q
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where N1 = 24n — 23 and Ny = 24(n + hrs) — 23 = 24n — 23 + %hc. We finish the proof by a rough estimate

(M N3, ¢) < q(MyNa, §) = q(M1Ny, ¢) < q(MiNy,c).

It remains to prove the claim for eta-quotients in Proposition 4.1.

Lemma 4.5. If v is the multiplier system for an eta-quotient

f(z) =] n(s=2)"

S|L
of weight % = %ZML rs, then the map z — 24z gives an injection
~ ~ 126\ "
Ly(N,v,r) = Ly | 5T6LN, 11 () v, T
S|L

Proof. The proof is similar to Lemma 4.3. Let vs denote the multiplier for a factor n(dz). Since for
(2%) € To(5760),
8 9)(2h) = (o8 287) (28 9),

we have

a a c/246 —
v ((ofan ) = (s ™)) = (el 250 = B)Cwo (1))
because e(15?) = (2)eq when d is odd. We take the product of all the factors. O

Remark. For the multiplier of a eta-quotient, the author does not know its Weil bound in general.

4.1.2 Lower bound for the exceptional spectrum

After we get a twisted theta-multiplier by level lifting, the following theorems show the relationship of

eigenvalues between weight 0 and weight % eigenforms.

Theorem 4.6 ([43, p. 304]). Let x be a Dirichlet character modulo AN’ for a positive integer N', v =
Vg (M) X, then for each eigenvalue A = % + 1% of Ay for (To(4N"),v), there is an eigenvalue N = 1 + 4r?
of Ag for (To(2N"), x?).

Recall the definition (2.16) of ra(N, v, k). We have the following bound:

Proposition 4.7. Let v be a weight k = :I:% multipler of ' = T'g(N) satisfying condition (1) in Definition
1.6 and assume Hy (2.15). Then we have

2Imra (N,v, k) <0.

Proof. We prove the case for k = % and the other case follows by conjugation. Condition (1) gives the

injection

z—Bz: L

(N,v,r) — Eg (M, (g)ug,r)

1
2
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where 4|N|M. We set x = (M)(!2l) and apply Theorem 4.6 to get an eigenvalue \' = 1412 of A for

(Fo(%), 1) with eigenparameter
/

r = TA(_%v 1’0) = 2TA(N’ v, %)

Assuming Hy (2.15) we have Im 7’ < @ and finish the proof. O

4.2 Kuznetsov trace formula in the mixed-sign case

Let a be a singular cusp for the weight k& multiplier system v on T' = T'y(N). For Res > 1, define the

Eisenstein series associated to a as in [33], [35] by

Eq(z,5) := Z v(Y)w(ogt,y)Imog y2)%j(og ty, 2) 7k (4.1)
YETN\T

and the Poincaré series for m > 0 by

Un(z,5) =Y 7(1)(Imy2)°5(y,2) Fe(my2). (4.2)
YEL o\

Both of the series converge absolutely and uniformly on compact subsets of the fundamental domain I" \ H
when Res > 1 and both of them are automorphic functions of weight k as functions of z. The Eisenstein
series can be meromorphically extended to the entire s-plane and have Fourier expansions on s = % + ir for
r € R ([33, (12-14)))

Eo(z + 1y, 8) = 6acoly® + pal(0, r)yl_s + Z pa(l, r)Wg sgn’, _iT(4w|g\y)e(gx)
(0

604,,0 : 41751—‘(28 - 1) 1—s

= dacoly® + Y pao(s) (4.3)

wik

ez I'(s+ %)F(s — g)

W g (i)
T -

— o(s)e(lx
20 e I'(s+ £ sgn) o )
where ~
1 _ . td
) =Y 5 > Poamoyoae( ), LA0.
c>0 0<d<c

v=(% g)€o.'T

We introduce two different notations pq(¢,r) and ¢qe(s) for later convenience. The Fourier expansion of
Eq(z,s) at the cusp b is denoted as [38, (2.64)] [44, p. 1551]

(Eal-8)[500)(2) = Savy® + pas(0,8)y" ™+ pav (b )W igng, 1o (47[ls|y)e(boz). (4.4)
0£0

where pqp(0, $) = 0 when np # 0. The Fourier expansion of the Poincaré series can be given by [11, (4.5)]

S(m, ¢ ~ ~
Ul +iy,5) = y'eline) + 3 3 30 20O e iy, s kel (45)
LEZ c>0
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where

_ o0 —m u+ti\ 7" e(—lyu)
B(c,im, Ly, s,k) = du.
(e, 6.y, 5, ) y/me<c2y(u+i)> (Iu+z‘> 1)

When Re s > 1, we have U, (-, s) € Li(N,v). More properties of these two series can be found in [33].

The following notations are very important in the remaining part of this chapter:

Setting 4.8. Let a = 4n\/|mn| # 0 and 0 < T < £ with T < 2179 where § € (0, 3) and finally will be
1
g.

chosen as
We define a family of test functions ¢ := ¢q 5 v as in [19] and [11]:
Setting 4.9. The test function ¢ : [0,00) — R is four times continuously differentiable and satisfies

1. ¢$(0) = ¢'(0) =0, and for some e > 0,

D (z) <z (j=0,---,4) asz — .

2. ¢(t) =1 for o= <t < 2.

3. ¢(t) =0 fort < 52—

-1

1ot < (357 -2) <z

5. ¢ and ¢’ are piecewise monotone on a fived number of intevals.
Using the notation

dxdy

2 i

Ealr, f) == f(2)Eq (z, % + ir)
I'\H Y

we have the spectral theorem:

Theorem 4.10 ([35, Theorem 2.1]). Let {v;(2)} be an orthonormal basis of Li(N,v). Then, any f € By (T, v)
has the expansion

6=t + X [ en D (s i
7 :,mgular a
which converges absolutely.
We also have Parseval’s identity [33, (27)]: for f1, fa € Li(T',v),

Ui b2) = S o) (o) + / ealr, PEalr, Fo)dr (4.6)

T smgular a

Define d
(r) —Chﬂ'T/ Ko (u Y (4.7)

which is an even function for » € R. Here we prove a Kuznetsov trace formula in the mixed-sign case:

Theorem 4.11. Suppose v is a multiplier system of weight k = +5 on I' = I'o(N). Let {v;(:)} be an

orthonormal basis of Ly(N,v). Let pj(n) denote the n-th Fourier coefficient of v;(-). For each singular cusp
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a of (T,v), let Eq(-, s) be the associated Eisenstein series. Let @an(% +ir) and pa(n,r) be defined as in (4.3).
Then for m > 0 and n < 0 we have

72 mncv¢< ﬁ)-‘lﬁz% pﬂ + 3 &, (4.8)

Nle>0 singular a

where

() i e G,

) 0 .
= 4/m|n| - E[ Pa (M, 7)pg (1) o(r) dr.

chnr

—~

Remark. The last equality follows from the following identity

ik : .
n ez T n|" 1 .
u pa(n,r) = : 7 ~) Pan (2 + zr) . (4.9)

m F(%Jrerrgsgnn

Proof. The proof follows the outline of [11, Section 4], taking into account the contribution of the continuous

spectrum. When n # 7, i.e. o, > 0, as in [11, Lemma 4.2, Lemma 4.3], for Res; > 1 and Re sy > 1 we have

Imﬂl(sla 32) = <Z/{m ('a S1, kv V) 72’{1—" ('7 52, _kvﬁ)>

e <ﬁz) 22701 ikl (s + 52— 1) Z S(m,n,c, V)K <4w\/m|ﬁ|>
S1—82 .

|77L| I (51 — %) T (52 + %) csl+s2 c

c>0

Setting s1 = o + % and so =0 — % w1th o > 1 gives

_ <m> “% 9320k (25 — 1) 5 Stm,n,ev) <4W\/m|fz> | (4.10)

Fle-5+5)Te+5-5) 5 < ¢

To compute the inner product in the second way we introduce the notation
A(s1, 82,7) :F(51 — % —ir)F(sl _%+iT)F<82 — % _iT)F<52 —%—&—ir).
One has (see also [33, (32)])
Ealr, Um(-,s,k,v))

o T i e (5) e

and

£a (r, Uri_n( s, —k,v))

= Pan (% + ir) (47r|ﬁ|)1*5|m*%+ire (—%) T
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Applying Parseval’s identity (4.6) we get

(47‘,)2751782,’%1751 ‘ﬁ|1752

T (s1=5)T (s2+3)

> pi(m)p;(n)A(s1, s2,75)

Tj

py 4¢7/ <n> %mr%ii?fu;;ér

singular a

Im,n(sh 52) =

and for sy =0+ % and sp =0 — 2

9

Im,n (U+ %,O’* %)

(4m)> =20l = (/7)) "% [~ _—
- i i pi(m)p;(n)A (o + 5,0 — 5,7

Flo-—,2+HT(c+5-%) ;j J ( 2 5.7) (411)

)" P s (A (4 o 1)

* / ( - ; dr
sirlg;uzlaru4m F(%‘i‘%_Z?“)F(%—%—f—ZT

When «,, = 0(= ap), we define
I;n,n(slv 82) = <um ('a 51, ka V) Uy ('7 52, _k7v)>

and the same process above shows that I}, ,(s1,s2) equals the right hand side of both (4.10) and (4.11).
The expressions (4.10) and (4.11) are equal when o > 1 and we justify their equality when o = 1. The
first expression (4.10) involving K;; converges absolutely uniformly for o € [1,2] because of [31, (10.45.7)]:

Kiy(z) < (tshwt)™% asz—0

and condition (2) in Definition 1.6. By the basic inequalities

T(c —|— +iy)|

<2[T(o + % +iy)],
o §+Zy| | 5 +iy)|

|F(U — = —|— zy)|

Ao+ %,0—%2,y) >0, and |pp'| < |p|> + |¢/|* for all y € R and p,p’ € C, the second expression (4.11)

involving A also converges absolutely uniformly for o € [1,2] as a result of its absolute convergence for o > 1.
With o = 1, we set (4.10) and (4.11) equal, cancel their common factors, multiply by

2 |n tshﬂ't/ Ky (u —

and integrate over ¢t. The following equations are helpful for getting (4.8):
(1) Kontorovich-Lebedev transform [45, (35)]

) 7t U ¢( )
2 Kit(x)t sh / Kzt(u)qi)( )?2 dt = Tx;
(2) A(l'i‘?t 1—* )Ch’] (%—i—’r)chﬂ-(ﬁ_r)_ﬂ%
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(3) [45, (39)]

o tsht 2 .
Ki(u d = .
/0 chrw(t +r)chnm(s —r) / ol Chﬂ'?”(b(r)

Theorem 4.11 now follows from this integration.

4.3 Estimating ¢ for the full spectrum and a special ¢

We focus on the case k = j:% and v admissible as in Definition 1.6. Recall the notations I' = T'y(N), a, T,
0, ¢ in Settings 4.8 and 4.9 and ¢ in (4.7). Recall that we write an eigenvalue \ of Ay for (I'o(N),v) as

A =1+ 7% where r €(0, 2] U [0,00). Bounds are known for ¢(r) when r > 1 and here we give bounds for
re Z(O 11U [0,1]. For simplicity, we omit the dependence of the implied constants on N, v and ¢ in this
section.

4.3.1 For r € (0, 1]

Suppose r = it for t € (0, i] By [31, (10.27.3), §10.37], for fixed u, K_¢(u) = K¢(u) > 0 is increasing as a
function of ¢ > 0. By [31, (10.7.7), (10.27.8)] we have

I(2t)2%
KQt(U) < 7, u S 1.
As for the discrete spectrum, there is a lower bound ¢ for ¢ € (0, ] hence an upper bound for I'(2t) depending

on N. Thus,
1
th(u) < ﬁ, u § 1.

By [31, (10.25.3)], we also have
Ko(u) <e™, u>1.

Let [, 8] = @ when 8 < a. We get

H(it) = cosmt /000 th(u)gb(u)d—u

d
< =40 eUdu (4.12)
(e w! T [1.3]

< (g)% +O(1).

In addition, assuming Hy (2.15), by condition (1) in Definition 1.6 and Proposition 4.7, there are only

two cases for r = it: t = i or 2t < 6. In the second case, we have
1

. x\ o
I(r) < <5) +0(1), T#5 (4.13)

4.3.2 For real |r| € [0,1)

We cite [46, pp. 9.6.1, 9.8.5, 9.8.6] for numerical estimations of Kjy:
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1. Ko(u) > 0 for v > 0,
2. Ko(u) < —log (%) for 0 <u <2,
3. Ko(u) < u=ze™ for u > 2,

and have
< / —log (7) — +/ u"ie  du (4.14)
[22 2] 2/ u o Jigza

The last inequality is due to a positive lower bound for a = 4mw+/|mn| > 47 min(a,, 1 — ) when a,, > 0 and
a > 4w when o, = 0, as mn # 0.
When r € (0,1), by [31, (10.32.9)]

Ko (1)) < / R gy — K (u).
0

It follows from (4.14) that

o(r) < (ax)®, r€][0,1). (4.15)

4.3.3 Forr>1

These bounds are recorded in [47, Theorem 5.1]. The first bound corrects [11, Theorem 6.1] and [12,

Proposition 6.2] (but later estimates in their paper are not affected).

e 2 for 1<r <&,
(;3(7‘) < pl for max (1, s%c) <r<g, (4.16)
min (r’%,rfg%) for r > max (%,1).

4.3.4 A special test function

Here we choose a special test function ¢ satisfying Setting 4.9 to compute the terms corresponding to the
exceptional spectrum r € i(0, i] in Theorem 1.7.

For a general weight £ > 0 and m > 0, n < 0 with exceptional eigenvalue A < %, we set A = s(1 — s) for
s€(3,1) and

tzImr:\/i—)\Z\/i—s(l—s):s—%.

In (4.12) the exponent is 2t = 2s — 1. Let the lower bound for ¢ > 0 be t dependingon N and 0 < 7" < T <
be T' := Tz =< 172,

z
3

Setting 4.12. In addition to the requirement in Definition 4.9, when —%= < 1.999, we pick ¢ as a smoothed

function of this piecewise linear one
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\

a a a
2z+2T 2z T z—T
where 2e(e4T)
_ 2x(x+

P (u) = =7 U € (gorar—o7 3av277 )

o ,-_T
¢ (u) = -2 D u€ (7, 7=r77);

4z(2+T) 4.1

0<¢'(u) <= fT u€ (gxigT’ 2;c+2éll”—2T/) U (23:—&(-12T/’ 32 )5 (4.17)

2 =T
OZQS/(U)Z_% UG(%7 z,aT/)U(ﬁJrT” ﬁ)’

¢'(u) =0 otherwise.

The above choice for ¢’ is possible because there is no requirement for ¢”(u) when u < 2 but for u — oo
in Setting 4.9.
Derived from [31, (10.25.2), (10.27.4), (10.37.1)], for r = it and 2t € [2t, 5], we have

Kot (u) = 22'5_11"(215)11_2’5 + O((%)2t) uniformly for |u| < 1.999

and

(Ko (u)] < |Ky (u)] < w”2e™*  uniformly for u > 1.

Thus, for r =it € i[t, 3],

! b(r) = 22711 (2t) /01.999 ¢(u)u‘2ti—u +0 (/01.999 q&(u)u%?) +0(1)

t
cos T (4.18)

1.999
= 22t—1f‘(2t)/0 d(u)u

Lemma 4.13. With the choice of ¢ in Setting /.12, when r = it € i(0, 1],

a

o(r) = 22711 (2t) /$ u " du + O (x2t—5a_2t +1)

2o (4.19)

22t71 22t -1 2t
LB (1Y )
a

1
cos Tt

Roughly speaking, this means that the integral on u € (5%, %) contributes the main term when z is large.

and u > % is

Proof of Lemma 4.13. When 1.999 < —2— < 3% we get 2 < a and ¢(r) = O(1) by (4.12), so the lemma
is true in this case. It suffices to prove that when —%= < 1.999, the integral on u < -
O(z%%a~%). As T < 2'7% where § > 0, we apply

2t—1

(1+az79%) 14+ (2t —1Daz? +0(=2°) =1+ 0(z7?)
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where the implied constants are absolute since 2t — 1 € (—1, —%] Combining the lower bound ¢ > t depending

on N, for the left part u € [5%57, 55], we use (4.17) and the above formula to compute the integral in (4.18):

z 2% g2t 2x(x+T) [
—2t—1 —2t
du=-"-(2) + d
/L ode==5-(2) + ot / ,
zt2T PEESL
+O<$1+5) (\/2T-¢—2T—2T’+/2L >u2tdu
at a a
2a+2T 204277
22t spN2t 2w(z+T) [ a\1—2 T
== (2 srrT) (4 1-20)= + Oz~
ot (a) T a1~ 20) (2:5) (( )5 Tok ))
e a 1=2t a \1-2t os
+O< at ) (2x+2T> Jr(%) O(™™)
22 pan2t 2214 7) a2 2t—§ 2t
=5 (G) + == (@) o™

=0 (1,21575(1721‘/ )

For u € [%, %], a similar process gives the same conclusion. O

4.4 Two estimates for the coefficients of Maass forms

Our main results depend on two estimates for the Fourier coefficients of Maass forms. These estimates were
recorded in [12, Section 4] but only for the coefficients of Maass cusp forms. Here we also require estimates
for the coefficients of Eisenstein series.

Recall our notations in Settings 4.8 and 4.9. In [44] an estimate for the coefficients of Maass cusp forms

was given under the hypothesis that for some § € (%, 1),

|S(n,n,c,v)] .
Z W <<(-_"V \n|5 (420)
Nle>0

Here we prove

Proposition 4.14. Suppose that v is a multiplier on T' = T'o(N) of weight k = :I:% which satisfies (4.20).
Let pj(n) denote the Fourier coefficients of an orthonormal basis {v;(-)} of Lix(N,v). For each singular cusp
a of (T,v), let Eq(-, s) be the associated Eisenstein series. Let pan(% +ir) and pa(n,r) be defined as in (4.3).
Then for x > 0 we have

il 3 e S [ it

r<r;<2x singular a

Loy 22+ |afreet =2 log” .

Remark. Since we focus on an admissible multiplier, condition (2) in Definition 1.6 allows us to choose

8= % + ¢ when applying this proposition.

Proof. First we suppose 1 > 0. The proof follows the same argument as [44, Section 4]. We note that

the coefficients of the Eisenstein series are not normalized correctly in their Lemma 4.2 (check with [33,
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Lemma 3]). This does not affect [44, Theorem 4.1] since these terms were dropped by positivity.
With the assumptions of Proposition 4.14, for any ¢ € R, using (4.3) and (4.9), the correct lemma is

2m°n 3 lps(n)|? Ly / lpa(n,r)Pdr
IT(1— % +it)]? \ &= ch2mr; +ch ot ch 27r + ch 27t

smgular a

1 2n S(n,n,c,v) 4mn k—1
= In + ] Z 2 /LKzz‘t (CQ) q""dg,

Nle>0

where L is the semicircular contour |¢| = 1 with Req > 0 from —i to i. Let K be a large positive real number.
Using [44, Lemma 4.3] we get the full version of [44, (4.3)]:

dOCCEEORDY | loatnr) P
singular a ¥ (4.21)
2
< K+ Z nnc”"Mk<Km)’
Nle>0 ¢
where
o0 e~ (t/K)? _ o—(2t/K)*
hi(r) = dt
x(r) /_Oo IT(1— % +it)?|(ch27mr + ch 2mt)
and . .
M(K,«a) = / (ef(t/K)2 - ef(zt/K)Q) / MF(S +it)[(s — it)a' "> dsdt.
—o0 © §—3

The right hand side of (4.21) is estimated in [44, Section 4] where we get

o Sl + 32 [ nnatrr

singular a ¥ (422)
=0 N (:z: + after=2810g? x) .

Observe that hx (r) is even as a function of r and h,(r) > e~™"lz%=1 when |r| < x. This proves Proposi-
tion 4.14 when 7 > 0.
The 7 < 0 case follows from conjugation by (1.13), (1.14) and (2.17), which is similar to [12, Section 4]. O

We also require a generalization of [12, Theorem 4.3] which includes the contribution from Eisenstein

series.

Proposition 4.15. Let M be a positive integer which is a multiple of 4. Let

(kvl/):(%a(g)Ve) or (_%,(7‘D|)V0) (_;’(\D\) 7).,

where D is an even fundamental discriminant dividing M. Suppose that v is a weight k admissible (Defini-
tion 1.6) multiplier on T' = T'o(N) with M, D, v' above for some integer B > 0. Let p;j(n) denote the Fourier
coefficients of an orthonormal basis {v;(-)} of Li(N,v). For each singular cusp a, let pa(n,r) be defined as

in (4.3) corresponding to the Eisenstein series on (I'o(N),v). Suppose x > 1.
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For n # 0 square-free or coprime to M we have

) |0 |Pi1 . / |Pa n,r) <o || +g0,
chrr; —»

[rj|<z smgular a

In general, for n # 0 we factor Bii = t,u?w? where t, is square-free, u,|M> and (w,, M) = 1. Then we
have
- sgn i |~ p pa(n,r) 131 B
k8 | rj|2<r |cf17r7"j Smguzlar a/_x l Ch7rr dr | <uve (|n|294 +u”) 2.

The proof of Proposition 4.15 uses Iwaniec’s averaging method as in [12]. One important property is
the relationship between the Fourier coefficients in different levels. This is not hard via the inner product
for Maass cusp forms, but not clear for the continuous spectrum. Here we apply arguments in [48] for the
calculations.

For the remaining part of this section we identify the levels. Let (-,-)(y) denote the Petersson inner
product over the fundamental domain I'o(N) \ H. For integer ¢ > 1, let w, := (‘Of 1/\[) € SLa(R).

Suppose that v is a weight k = :I:% multiplier on Ty(S) and v(7) is a weight k& multiplier on T'o(T).
Suppose that there exist positive integers ¢ and T such that

f(z) € A(S, VD) = flgz) = (flrwg)(2) € Ap(T, v ). (4.23)

Note that this relation implies ¢S|T.

For L € {S,T}, let pg-L)(n) denote the Fourier coefficients of an orthonormal basis {v](.L)(-)} of Ly,(L, v ).
For each singular cusp a of (Io(L), ")), let EgL)(-, s) be the associated Eisenstein series. Let gagi)(% +ir)
and ng)(n, r) be defined as in (4.3).

Let VJ(T) (2) = U](S) (gz) and E(ET)(Z,S) = B (gz,8). So V](T) and €§T)(-,% + ir) are eigenfunctions
corresponding to the discrete and continuous spectrum of Ay, respectively. Let n() :=n — a,w) forn € Z

and suppose a,,r) = 0. Then gn(g) € Z and

S S
P ) =P (qnesy) and 8 (n, 1) = P (angsy. 1), (4.24)

where PJ(T) (n) and Pc(lT)(n, r) are the Fourier coefficients of VJ(-T) and Ec(.T)(~, 1 +ir) as in (4.3), respectively.

Since du(z) = djjij is invariant under GL3 (R), we can denote I(S,T)) as the normalizing constant such

that

<f(q)7g(Q)>(T) = I(Sa T)<f,g>(S), for all fag € ‘Ck(Sa V(S))'

So I(S,T) is the index [['g(S) : To(T)]. The set
{1(5, T)=3V™ () 17 of rO(S)}

is an orthonormal subset in Ly, (T,v™)) and can be expand to a orthonormal basis of Ly, (T, 1)) as

20
{W “ Ty of FO(S)} U {ng)() Ty of FO(T)} R (425)

(T

where each w; is a linear combination of vﬁT) from the standard basis. Let the Fourier coefficients of w; be
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denoted as p}°™(n), which is the corresponding linear combination of {p§.T) (n)};.

For the continuous spectrum, as in [48, (8.1)] we let &,.(L) be the finite dimensional space
é.(L) := span{EéL)(', 1 4ir) : singular a of (To(L), v

This &,.(L) is also the subspace of eigenfunctions in the continuous spectrum of Ay with eigenvalue A = % +7r2.
We define the formal inner product

Ei

is L ; L ; ° L
<'»'>EEL) : <EC(I )(', % + i), Et(, )(', % +”)>(L) = 47”55111)7 (4.26)

where 551{;) =1 if cusps a and b are I'y(L)-equivalent and 6&? = 0 otherwise. This inner product is extended
sesquilinearly as a inner product on &.(L), which means it is conjugate linear at the first entry and linear at
the second entry.

Recall (4.4) for the Fourier expansion of Eisenstein series at the cusps. Since e (-, 2 +ir) = Ec(ls)(q-, 3+

ir) € &.(T) where a is a singular cusp of I'y(S), we can write

N i = Y ®B (2L +ir). (4.27)
singular b

of To(T)

Let

I(S’T’ Cl) = Z |Ca(b)|2,
singular b
of F()(T)

then we have
Eis

<5§T)(., Ltir), &0, 5+ ir)>(T) =4nl(5, T’ a).

On the other hand, we know that &ST)(~7% +ir) = EC(IS)(-,% + ir)|rwq. Then the Fourier expansion of
S (-, 3 +1r) at the cusp b has a non-zero y2 T term, if, and only if, the Fourier expansion of EE.S)(-, 1+ir)
at the cusp wyb has a non-zero y%'*‘”’ term. Since EéT)(-, % + ir) only has non-zero y%“'” term at the cusps

equivalent to b on I'g(7T"), we can rewrite (4.27) as

N (2,1 4ir) = 3 ca(®) BT (2,1 +ir). (4.28)

singular b of I'o(T)
wqb equivalent to a on I'o(S)

The above sum is well defined. In fact, if two cusps a; and ay are nonequivalent on I'g(.S), then wy La; and

w, 'ay are nonequivalent on To(T'). This is easily verified with (4.23) by ¢S|T and
AT eTy(T) = wq’y(T)wgl e [o(9).

Then the sums in (4.28) for Sg) and ch) are on disjoint singular cusps of T (7).

Therefore, by the orthogonality in &.(T) with respect to (-, >EE%S),

Eis
(e +ar), €04+ ir)>(T) — 4 I(S, T, 01)6%),. (4.29)
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Now we can expand the set
{I(S, T, a)_%ELST)(-, 1 +ir): singular a of I‘O(S)}

to an orthonormal basis of &.(T") with respect to (-, >?7£S) as

N+ 1 £ Ty (S) U{F(T)< 1 | ir): singul (T (T)} (4.30)
——2 2 singular a o -, & 4ir) : singular a o , .
1(S,T,a)% g 0 a B g 0
where each F{") is some linear combination of E{"). We denote the Fourier coefficients of F\" as pa P (n,T)
and @gp, P (3 +ir) as (4.3), which are corresponding linear combinations of P (n,7) or cpgm)( +ir).
Recall the standard expansion for h € By (T, (")) [35, Theorem 2.1]
h(z) = (h,v! v 4 / h ES( +zr)> B (L +ir)dr
r; o;“:()(T) smg%;mr u ? () ’ ’ 4.31
of T'o(T) ( . )

=: hp(z) + hc(z)

For the discrete spectrum, we have an alternative orthonormal basis (4.25) hence another expansion for hp(z).
For the continuous spectrum, [48, Proposition 8.2] ensures that the above expansion fo hc(z) is invariant with
an alternative basis (4.30) (where we write Young’s notation (F, F)gis = 47 explicitly here to be consistent

with our notations). Now we can deduce another expansion for h:

h(z) = hp(z) + ho(z)
= v;(q) vj(gz) I
- & <h 1(5, T)5>(T) (5,1 > (b))

r; of I'g(S) r; of To(T)

S S .
2 / B wgrin) B i, (4.32)
I(S,T, U.) ) I(S,T, a)%

singular u
of FU (S)

+ Y / (n, R ,2—Hr)>( . F (2,1 + ir)dr.

singular a
of T'o(T)

We now show that I(S,T,a) = I(S,T). Let h € Bi(S, ) be orthogonal to the discrete spectrum, i.e.
hp = 0. The standard spectral expansion of h at level S gives

hz)=he(z)= Y, ; / hES) (4 + ir)>(s) B (2,1 +ir) dr.

singular a

of Fo(s)
Especially,
h(qz) = Z / h ES (. i+ w‘)> < EY (qz,  +ir) dr. (4.33)
singular a ()
of Fo(s)

However, H(-) = h(q-) is in Bi(T,vT)) (and is still orthogonal to the discrete spectrum) with spectral
expansion Hc(z) as (4.32). As we have shown the orthogonality of (4.30) in &,.(T) under (-, >£3TIS), the spectral
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expansion of H(-) has to be unique on a subset of the basis (4.30). Comparing (4.33) and (4.32) we have

(S) 1 .
B (g5 +ir) (%) ,
<h(q-), I(Sﬂf’a) >( ):(h,Ea (3 +ir)hs = I(S,T,a)=1(S,T).

Now we are ready to state the formula connecting the Fourier coefficients of different level eigenforms.
For 0 =Res > 1,t € R and n > 0, we compute the inner product

(U, (o + 3), U8 (0 - g)>m (4.34)

s [33, Lemma 2]. The results are the same if we apply the above decomposition (4.32) for h(z) =
Uég()s) (z,0 + %) and if we apply the standard spectral decomposition (4.31). Recall the notation

A(o +it,o0 —it,r) = |F<0‘—%+i(t+7“))‘2 }F(U—%‘f‘i(t_r))F-

For o > 1, we can get two results of (4.34), as on the right hand side of [33, (30)], by the two different
expansions mentioned above. The following equation is the identity between such two results, where we recall

(4.24) for the relation in Fourier coefficients:

_ S i
Yo 1T AT PA (o + %0 — %)
T4 Ofro(s)

—o 471F(§+§—Z7’)F(§+§—ZT)

singular a

of T'g(S)
+ Z |p50mp(qn(s))|2A (U + %t? g — lgta j)
r; of To(T)
o o R et e L (439
singular a 4qn S)F( +§ _ZT)F(§+§ _ZT)
of Fo(T)
— (1) 2A it _ it
= D I n)PA (o + 50— 4r))
Tj of F[)(T)

o0 |cpa an sy ( —|—ir)|2A (U-l— i;,a— u )dr
+ 2 / Tk D (3 k_
4qn5)F( +3 zr)F(2+2 zr)

singular a
of F()(T)

With the help of (4.9) on the notations, we have proved a lemma regarding the shifting of levels:

Lemma 4.16. Given T > S > 0 and S|T, with the notations above, for allt € R and o > 1 we have (4.35).
In addition, with (4.9) we can also write the terms involving pae(3 + ir) as those with pa(£,r) and we omit

the duplicated formula here.

4.4.1 Proof of Proposition 4.15

We still use superscript -(M) to identify the level and should be careful on it. The notations p; and pg in the

statement of Proposition 4.15 are on level N and among the proof we utilize two more different levels. When
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Bn is square-free, [12, Theorem 4.3] gives the bound

2

k:sgnn |p] ( )| < ;g}l+€ 3 436

D (436)

[rj| <z

Our proposition generalizes the above bound. It suffices to prove the general case involving u,, with . > 0
and k = £, where the 2 < 0 case follows from conjugation by (1.14) and (2.17).

Following the notation in [12, §5.2], we can take the fundamental discriminant D to be even and

M =0 (mod 8) as a positive integer with D|M. Let P be a positive parameter (chosen later to be n7) and
Q=09(n,M,P):={pM: pprime, P<p<2P, and pt2nM}.

We take any pM in Q. In [12, p.1698], they require the property that when {’U](-M)} is an orthonormal subset
of L1, (M,v'), then {[[o(M) : FO(pM)]*%véM)} is an orthonormal subset of £y (pM, v'). This is easily verified
by the inner product of Maass cusp forms, but we cannot take the inner product of two Eisenstein series. We
will use the discussion above in this section, especially Lemma 4.16, to interpret the estimates between level
M and level pM involving Eisenstein series in detail.

The following lines sketch the proof in [12, Section 5]. Let

1
D(u) := 8\/§u_%J3(u), u > 0.

where J; is the J-Bessel function. We have ®(0) = ®'(0) = 0. For s € C, define

B(s) 1= /Ooo Js(u)@(u)%“
and AT(LEE 4 )2
@(r) = % (5(2@7’) cosm(& +ir) — &(—2ir) cosm (5 - zr)) .

As in [12, above (5.13)], ®(r) > 0 for r € RU (0, 1] At level L = M or pM, define

~

/.:(L)(n n) 1= 4x|n| Z |ij) |2ﬁ

chmr;

where the sum runs over the discrete spectrum of Ay on I'g(L) and

M (n,n) = 47r|n|z / 10 (n h( )tdt

where the sum runs over singular cusps of I'o(M). At level L = N, we define L’gv) and ./\/lgv) with |n| changed
to |n| because o, might be non-zero. Equation [12, before (5.14)] (also [35, Theorem 2.5] as the original

reference)
Eg)M) (n,n) + Mg’M) (n,n) = e(—%)ICg)M)(n, n) — ./\/:i()pM)(n7 n) (4.37)

was used to conclude

£ (n.m) < (=g (n.m) ~ NP m.m)
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by dropping the positive term ./\/lgM)(n7 n) and [12, Theorem 4.3] was proved by estimating the average of
the right hand side. Here we must retain this term. Recall the index [['g(M) : To(pM)] <p+1 < P:

Proposition 4.17. With the notations above in this subsection, for pM € Q we have

(M) (M) (M) (M)
Ly (n,n) + Mg (n,n) N Ly (n,n) + Mg (n,n) (438)
[To(M) : To(pM)] P

LgM) (n,n) + MgM) (n,n) >

Proof of Proposition 4.17. First we apply (4.35) in Lemma 4.16 with levels M and pM. Here we take ¢ = 1,
v = (1) = (@)1/92’C for k =+ and I(M,pM) = [[o(M) : To(pM)] to get

! t
[FO(M);FO(pM)]< S M PA (e + 2o —Ery)

rj of To(M)

N Z /°° |g0(M) +ZT)|2A(O'+* J—%,T‘) dr)
singular a ¥ — 47’ZF + 5 B ZT) r (§ + 5 - Z’I")
of To(M)

LD DI e PN CEE N N0
r; of To(pM)
n Z /oo |<,0C0mp )|2A (J_A'_, U—E,T) dr (4.39)
_ +§—’L7“)F(§+§_“«)

singular a
of To(pM)

- Z |p;pM)(n)|2A(o+ %70—%,73)

rj of To(pM)

> |¢pM><%+zr>|2A<a+g,a—g,r)dr
DY E ;
o AT (345 —in)T (545 —ir)

singular a

of To(pM)
Following Proskurin, we multiply a function of ¢ defined by [33, (53)] on both sides of the above formula,
integrate ¢ from 0 to oo, and pass to the limit ¢ — 1. In addition we take the test function ¢ in [33, (34)]
to be our ® here. What we get simplifies to (see [33, (83)])

~

1 (M) (M) comp 2 (I)(Tj)
To(M) : To(ph)] (L@ () £ M)+ 3 WG
r; of To(pM) <

Ny

a of To(pM)

= Eg)M) (n,m) + ./\/lgM) (n,n)

Our notations are consistent with @gq¢ in [33], bq(¢, ) in [35], and ~ in both the references. Since [12, below
(5.13)]

d(r) >0 for re RU(0,1],

we can drop the extra terms with superscript “comp” by positivity to get the desired inequality. O
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With Proposition 4.17, since |Q| =< $7 summing (4.37) over Q gives

lolP (,C%)M)(n,n) +ME§M)(n,n)) < Z ‘IC((;M) (n,n)‘ + Z ‘Ni()pM) (n,n)]|. (4.40)
8 pMeQ pMeQ

When n is square-free, it was shown in [12, §5.3-5.5] that the right hand side of (4.40) is bounded by
O(n=i+eg3), where P = n7 = log P < n°.

Next, we will prove the bound on the right hand side of (4.40) when n is not square-free. The estimates
in [12, §5.3-5.4] depend on their Proposition 5.2, which is the only place that requires n to be square-free.
That proposition is a special case of [49, (19)], so we apply the general estimate from Waibel’s paper here.
For € {—1,0,1}, n € N and z > 1, define

S(n,n,c,v) (2un
KI(LN)(n,x) = Z — " ‘e <> .

C c
Nlc<z

Proposition 4.18 ([49, (19)]). Suppose that N =0 (mod 8), that u € {—1,0,1}, that n > 0 is factorized as

n = tu?w? where t is square-free, u|N>° and (w, N) = 1, then

Z |K&Q)(n,aj)| < Ne (a:Pié +aun”? + (x—!—n)% (J:iP% —|—n%x§Pi)) (nx)*.
QeQ

Note that in the proof, Waibel chose P to be nr. By using the above proposition in each place of [12,

§5.3-5.4] where [12, Proposition 5.2] was applied, we obtain new estimates that are recorded here:

12, (5.19)] < (z—%n% foin® g €_2u> (en)".
[12, (5.22)] < (e%n% + i +e%u) (tn)".
3.5 23, 13 _2
. n 2 .
[127 (5 24)] < 7+65+€+nr6+12ﬁ+6+un $B+e
[12, after balancing (5.26)] < nEate | ogypTe e
[12, (5.28)] 3 ’KEI?M) (n,n)‘ < n¥Ete e
pMeQ
12, (5.29 NP ()| < n¥e 4+ uns.
P
pMeQ

Based on the last two estimates and (4.40), we derive

131

EéM)(n,n) + ./\/lfiM)(n, n) < (n24 4+ u)n. (4.41)

Finally we transfer the bound to level N. Apply Lemma 4.16 again with level N and level M, where we

have v(V) = v, (M) = 1/ = (@)I/gk, q = B and gqn(yy = Bn. For £ € {m,n}, we factor |Bl| = tyulm? in
the statement of Proposition 4.15. Here

Py = oM (BR) and N (n,r) = oM (B,

for r; a spectral parameter of Ay on I'g(N) and a a singular cusp of (I'o(N),r). As in the proof of

Proposition 4.17 above, we integrate (4.35) to a result involving <f>, drop the extra terms as &)(7‘) > 0 for
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r € RUi(0, 1], and get

_ 10" <>|2 < | (n,r)? o
|n|< Z chrr; Z 47r/ chmr <I>(r)dr

r; of Co(N) mnguldr a
of To(N)
= £ (n,n) + MLV (n,n) <, £8(Bi, BR) + MY (Bi, Bi) (4.42)

<ve (1BAIS 40, ) |BA)
181 _
<ve (|n\294 —|—un> |7]°.
Following from the same argument as [12, §5.5, (5.31-33)], when = > 1, k = &% and 7 > 0 we have
d(r) P <P F for|r| <a

and get Proposition 4.15. When n < 0 it follows from the relationship (1.14) and (2.17).

4.5 Proof of Theorem 1.7, mixed-sign case

In this section we prove Theorem 1.14 in the case mn < 0. For simplicity let
1 1
_ 131 3/ 3 s - 1 - 1 1
A(m,n) = <m294 + um) (|n|294 + un) < |mn|sE 4+ msssu? + |58 ug, + (umuy,)?2

and

) (4.43)
~ ~ ~ ~ 2 ~ 3 143
& |mn‘588 + m3s8 |n‘16 us + mie |n|588

m\»—A

+ || 36 (U ) 3.

300\»-‘

U

Moreover, all implicit constants for bounds in this section depend on v and ¢ and we drop the subscripts
unless specified. Recall the notations in Settings 4.8 and 4.9. For the exceptional spectrum r; € i(0, } of the
Laplacian Ay on I' = T'y(NN), we have 2Imra < 6 assuming Hy (2.15) by Proposition 4.7 and Imr; has a
positive lower bound ¢ > 0 depending on V.

Proposition 4.19. With the same setting as Theorem 1.7, when 2x > A,(m,n)?, we have

S(m,n,c,l/) 2s5;—1 1:287‘71

o\im,n,cv) 92s;—1 _ 1)1 z

22 c Z . mm g
z<1\c[|? z r;€i(0,%] (444)

< (9:é + Au(m,n)) |mnz|®.

We first prove that Proposition 4.19 implies Theorem 1.7. For each j, let p;(n) denote the coefficients
of an orthonormal basis {v;(-)} of £(N,v). For each singular cusp a of I' = To(N), let Eq(-,s) be the
associated Eisenstein series and pq(n,r) be defined as in (4.3).

Recall the definition of 7;(m,n) in Theorem 1.7 and 2Imr; = 2s; — 1 € (0,3] and ¢ > 0 as the lower
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bound of Imr; depending on v. The sum to be estimated is

v Smmer) s AT (4.45)

c 2s; —1
Nle<X r;€i(0,1]
For r; € i(0, 1], by Proposition 4.15 we have
;L? < |pj(m)p;(n)|[ma| = < A(m, n) || 3=+, (4.46)
=

When X < A, (m,n)?, since A(m,n) < 2|mil|3,

X28j—1

< A(m,n)|ma|z =55+ A, (m,n)*% 2
255 —1 (4.47)

= A(m,n)* 2 [mi|s 5% < Ay(m,n).

7j(m, n)

So in this case we get Theorem 1.7 where the 7; terms are absorbed in the errors.

When X > A, (m,n)?, the segment for summing Kloosterman sums on 1 < ¢ < A,(m,n)? contributes a
O,.(Ay(m,n)|mii|*) by condition (2) of Definition 1.6. The segment for A,(m,n)? < c¢ < X can be broken
into no more than O(log X) dyadic intervals z < ¢ < 2z with A, (m,n)? <z < £ and we use Proposition 4.19

for both the Kloosterman sum and the 7; terms. In summing dyadic intervals, for each r; € (0, i], we get

Dog2(X/Au(m,n)2)—| o 25:—1
Z (2571 = D7i(m,n) ( X\
2 25, — 1 21

_ Tj(ma n) X2sj71 <1 . 2(1723_7')(logQ(X/Au(m,n)z)]) )

25— 1
X25j—1
The difference between the above quantity and 7;(m,n) Y in (4.45) is
i —
X2t (128 [log, (X/A 2 7i(m,n) 45,2
7;(m,n) - 9(1=25)) [logy (X/Au(m.n)?) ] LA (myn)* T < Ay (myn). (4.48)
28]‘ —1 2Sj -1
by (4.46). In conclusion, for X > A, (m,n)? we get
Z S(m,n,c, l/) Z ( )AX’zsji1
—_ - Ti(m,n
c I 2 — 1
N|e<X r;€i(0,1]
S(m,n,c,v) X281 .
=Y T Y ntmmg— + O(u(mn)inif)
Ay (m,n)?<ec<X r;€4(0,1]
lo X/Au(m,n 2 Si—
B IV g2( /Z( ) )W Z S(m,n,c, l/) B Z (22sj—1 _ 1)7—J(m7 n) { 2 j 1
B . . c — 2s; — 1 2!
£=1 S <e< i r;j€i(0,%]

+ O(Ay(m,n)|mn|®)
< (Xé + Ay(m,n) ) |mnX|°
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where the second equality follows from (4.48) and the last inequality is by Proposition 4.19.
It remains to prove Proposition 4.19. For r; € i(0, ﬂ, by Proposition 4.15 we have

VI p;(m)p; (n) < A(m, n)liii|*.

Applying Lemma 4.13 where 2t; = 2Imr; = 2s; — 1, recalling the definition of 7; in Theorem 1.7 and
a = 4mwy/|mn| in Setting 4.8, we get

4/ | pj (TJ)

2s;—1

(4.49)

28j71

= (2271 —1)7;(m,n) + O (A(m, n)|mn|* (|~ 2 =0 +1)).

The error term is O(A(m, n)|mn|®) when 2¢; < ¢ and is O(z2 9 |mii|*) when t; = 1. Thanks to Proposition 4.7
we can choose § > 6 (§ = § > & in the end) and ¢; < § implies 2t; < 6 < §. With the help of (4.49) we
break up the left hand side of (4.44) as

S(m,n,c,v o x2si—t
Y Smmen 3 ey
r<e<2 73 €i(0, 7] !
Nle
S(m,n,c,v) S(m,n,c,v)  ra 15 -
< _ NI T s €
S| X TR X SEeee () o ([ rAmmm) ) g
r<c<2x Nle>0
Nle
N Z S(m,n,c,u)(b<g>_SZ — Z Pg é(r)
c c ch7rr] ’
Nlc>0 r;€i(0,%]

=5 +0 ((ﬁ-é + A(m, n)) |mﬁ|a) + S,
Recall T < 2'79. The first sum S; above can be estimated by condition (2) of Definition 1.6 as

S
si< Y Bmmenl s

4
z—T<c<lz (451)
20<cL2z+2T
Nle

We then prove a bound for S;. Following from the trace formula (4.8),

V]ma| ij Z / pamrpa(nr)i()rdr.

r; >0 singular a

When estimating S, we focus on the discrete spectrum r; > 0, because the bounds provided by
Proposition 4.14 and Proposition 4.15 for r; € I for any interval I are the same as those provided for for

|r] € I in the continuous spectrum. For r € [0,1), we apply Proposition 4.15, (4.14) and (4.15) to get

ViRl >

rel0,1)

pilm)p;(n) Chﬁj 2s)os () 5| A, mliil. (4.52)
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_r

For r € [1, &), we apply Proposition 4.15 and (4.16) with ¢(r) < e~%. Since

= mlal Y pJ ()] « A(m,n) R®|mii|° (4.53)
r€[1,R] J
by Cauchy-Schwarz, we have
] ] (n)| _mi
Z ch Ty Tj < vl Z ch7r7"j ¢’
rel[l,g%) re[l,ﬁ)
< e 28(r / S(r)e”2dr (4.54)

< A(m, n)|iial® <1 + / 6£r3dr>
1

< A(m,n)|mnzx|®.

For r € [¢-, %), we apply Proposition 4.14 on m, Proposition 4.15 on 7 and (4.16) with o(r) < 1<y
get

chnr
5z ST<g
1 1
< (g +ﬁﬁ) (a)2 (|ﬁ|131 +un> * ||t (4.55)
x T
a % 1 131 % a %
< (A(m,n) (7) +m (|ﬁ|2T4 + up, (7) ) |mnz|®.
T T

— pi(m)p;(n)
Y (e,
Hr<t ’
< (7) : {A(m,n)z + min <ﬁl‘11 (|ﬁ\% + un> : , |1~L|i (ﬁzlgi + um) 2)} |mnx|® (4.56)
a

where in the last inequality we applied min(B, C) < v BC' and the definition of A(m,n) at the beginning of
this subsection.
Let

P(m,n):= 2|ﬁw~z|§A(m,n)*% > 1.

Divide r > max(%,1) into two parts: max (%, 1) <r < P(m,n) and r > max(%, 1,P(m,n)). We apply
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Proposition 4.15 on the first range and (4.16) with ¢(r) < =2 to get

pi(m)pi(n) 5

chmr;

Vil >

max(%,1)<r; <P(m,n)

(r)

p;(m)p;(n)
chmr;

r

vl

< /|7 >

max(2,1)<r; <P(m,n)

P(m,n) P(m,n)
) +/ T7%S(T)d7”

r=max(%,1) max(2,1)

(4.57)

< r*%S(r

< |ma|T6 A(m, n) 3 |maz|®

by partial summation. We divide the second range into dyadic intervals C < r; < 2C and apply Proposi-
tion 4.14 and (4.16) with ¢(r) < min(r*%,r*%%) to get

— pi(m)p;(n) -
N G I N e o))
Cc<r;<2C0 chr;
3 5 1 1 1 4.58
< min (C*ﬁ,()ﬁ%) (02 + (mf + 3| 1)C + |mfz|z) | (4.58)
< (min (c%,c**%%) + (it + (3O 4 Al Co?) sl

min (C%,Cfé%)

I
3
3
IN
gL
N
N
N
| 5
N—
wle
A
/N
8
N—
Wl

, T T
j>1:2C=% Jj=1
C>P(m,n)
and when . 1
1 1T 1 X 1T 7 T\ 2 T\ 2

n(ch.04E) <o GzeTei(E) < (3)

mln(C’ZC' QT) C 2T - Z ,,,O 2T_Z 2 T < T
j=>0: C=27 % 7=0

So after summing up from (4.58) and recalling 7" < 2'~% in Setting 4.8, we have

ﬂﬂ"ﬂﬁﬂn)é

ch7r;

Vo DS

ry>max(£,1,P(m,n))

(r5)

< ((;) + (7 + [7])E [di| = T A(m, n) T + |mﬁ|1%A(m,n)f’z> iz (4.59)
< (:f + |mﬁ|%A(m,n)%) Az,
where the last inequality is by |mi|3 > A(m,n). Combining (4.57) and (4.59) we have
NG 7%”(”%@) < (2% + Ay(m, ) ) el (4.60)
r>max(2,1) e

Proof of Proposition 4.19. Clearly A, (m,n) > A(m,n). Combining (4.50), (4.51), (4.52), (4.54), (4.56), and
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(4.60) we get

S(m,n,c,v) 251 x2si—1
-~ T 7 7 248j — 17 -
<Z<2 p 201 ( )Tj(m,n)QSj_l
Ne ri €0 1] (4.61)

3
2

1
an d
< <xé5 + Aulm,n) + AGm,n) (2)7 4 it Agm, )b (2)7 + x) iz
x x
Since 2z > A, (m,n)? by assumption, we have
5 < Al AGm, )~
x

which implies both

NJ=

A(m,n) (%)% < Ay(m,n) and |mals A(m,n)? (%) < Ay(m,n). (4.62)

Taking § = % we get the desired bound.
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Chapter 5

Sums of Kloosterman sums: uniform

bounds, same-sign case

In this chapter we prove the complementary case mn > 0 in Theorem 1.7. The difference of the proof in this

chapter from the previous one is due to the difference between Theorem 5.1 and Theorem 4.10.

5.1 Kuznetsov trace formula in the same-sign case

Let k€ Z + %, N be a positive integer, and a be a singular cusp for the weight £ multiplier system v on
I' = T'y(N). Recall the definition of the Eisenstein series associated to a in (4.1). For m > 0, recall the
definition of Poincaré series (4.2). Recall the Fourier expansion of the Poincaré series in (4.5) and of the
Eisenstein series in (4.3).

Suppose m and n are positive integers and recall the definition of v, in 1.11. Recall Setting 4.8 and

Setting 4.9. In this chapter, we need the following transformations of ¢:

~ ° du
50y = [ I o) (1)
0 u
and for k > 0,
3r) 1= 2 (+hymi Jo7 (cos(EE + mir) Joip (u) — cos(EF — mir) J_gin(u)) ¢(u) % (5.2)
sh(mr)(ch(2mr) + coswk)['(3 — & +ir)D(3 — & —ir)
with the corrected version of [42, (2.12)]
. e [ cos(u)p(u)u~ 2 du k=1,
O =9 |t oo . (5.3)
et [ sin(u)p(u)u~zdu k=3,

For an integer [ > 1, let B; denote an orthonormal basis for the space of holomorphic cusp forms
Sk,+21(N, I/) and

%k = U Bl.
=1

(0]



Suppose that the Fourier expansion of each F' € %y, is given by
oo
F(z):= Z arp(n)e(nz). (5.4)
n=1

Let wp denote the weight of F' € %). Here is the trace formula:

Theorem 5.1 ([33, §6]). Suppose v is a multiplier system of weight k = 3 or 3 on T'. Let {v;(-)} be an

orthonormal basis of Ek(N, v) and Eq4(-,s) be the Eisenstein series associated to a singular cusp a. Let p;(n)
denote the n-th Fourier coefficient of v;. Let @an (5 +ir) or pa(n,r) denote the n-th Fourier coefficient of
Eq(-, 1 +ir) asin (4.3). Let By and ap(n) be defined as in (5.4). Then for m > 0 and i > 0 we have

ZS(m,n,C,V)¢ <47r\é%> U Wt Z & (5.5)

- ‘ singular a

where | »
47 wg eTiwE - N
=2 (47r)w(F (mn)wr—1)/2 ar(m)ar(n)p(wr),
Fe%By
W= 4\/%2 M(E(”)
. chmr;

and

£ — /oo (m) pam (5 + 1) Pan (5 +ir) S(r)dr
¢ chmr |I‘(%+§+ir)|2

chrr

= 4V - % /_Z Pa (M, 1)pq (N, 1) o(r) dr.

Remark. We clarify two points in the theorem.

(1) In the term Uy corresponding to holomorphic cusp forms, each function F' € %) has weight wp =
k420> 3.

(2) The equality of the two expressions in &, is by (4.3):

E palr) = T (3+7)
— n,r)= ——4ar ).
7Tpa ’ F(%—«—ir—k%sgnﬁ)(pan 2

5.1.1 Properties of admissible multipliers

Suppose v is a weight k admissible multiplier system on I' = T'o(N) (Definition 1.6) with parameters B, M

and D. Besides Proposition 4.7, we also have:

Proposition 5.2. Suppose that v satisfies condition (1) of Definition 1.6 with v/ = (@)ugk. ForleZ, let
K =k+2l> 2. Suppose {F;;(-)}; is an orthonormal basis of Sk (N,v) and {G;;(-)}; is an orthonormal
basis of Sk (M, v"). Denote ar ;(n) as the Fourier coefficient of Fj; and ac ji(n) as the Fourier coefficient
of Gj;. Then we have

dim Sk (N,v) dim Sk (M,v")
ST lapumP <ne Y. laca(BR)P. (5.6)
j=1 j=1
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Proof. By condition (1) of Definition 1.6, we know that
{[FO(N) :To(M)]"2F;,(Bz) : 1< j < dimSk(N, u)} (5.7)

is an orthonormal subset of Sk (M, v’). Since the left hand side of (2.6) is independent from the choice of

basis, we expand (5.7) to an orthonormal basis of Sk (M, ') and get the result. O
Now we start to prove a bound for the right hand side of (5.6). First we have

Proposition 5.3 ([49, Theorem 1]). For K € Z+1, K > 2 and a quadratic character x modulo M, suppose

{ Z e(nz) lgjgd::dimSK(M,Xng)}

is an orthonormal basis of Sk (M, xva™). 2

(w, M) =1. Then we have

For n > 1, write n = tu?w? with t square-free, u|M> and

d

1) 3 €

T RTT E \aj <<K]\/[E (n7 +u>n
47m =

Note that the implied constant in the bound above depends on K when expressing Bessel functions (see
[49, after (8)] and [50, Theorem 1 and p. 400]). For our proof, it is essential that the bound remains uniform

across the weights. We modify the estimate and get the following proposition.

Proposition 5.4. With the same setting as Proposition 5.3,

19

d
1 19
47m Arm)E—1 E laj(n)* <are (%2 +u)nc.
Jj=1

Proof. We do the same preparation as [49, around (8)] to estimate the right hand side of (2.6). Let
P > 1+ (log2nM)? (finally chosen to be =), n7) and define the set of prime numbers

= {pprime: P <p <2P, p{2nM}.

Here we have #P =< P/log P.
For {®;}, a orthonormal basis of Sk (M, xv3%), the set {[To(M) : Fo(pM)]’%i)j}j is an orthonormal
subset of Sk (pM, xv3¥). Recall (2.6) and we have

d
1 2 2K 4
Z |% <1qomik Y SmexT) (?) . (5.8)

K—
47m FO (pM)) e c

J=1

For those p € P, [['o(M) : To(pM)] < p+ 1. Summing (5.8) on p € P and dividing #P we get

— d n,n,c, yv2& ™™
Wz laj(n)]* < P+ (log P) Y | > Slvmexvy?) g <40) . (5.9)

X C
j=1 pEP |pM|c

(s



The average estimate of

W) (o S(n,n,c,xv3™) (2un
K@) = > 7\ ) pe{-1,0,1}
pM|c<z

can be found in [49, (19)] that for p € {—1,0,1},

Z |KI()§LV)I(x)\ KM e (xunfé +aP % 4 (x4 n)F (x%P% Jrn%x%P%)) (nx)®. (5.10)
pEP

We break the sum on ¢ =0 (mod pM) at the right hand side of (5.9) into ¢ < n and ¢ > n to estimate. The

uniform bound of J-Bessel functions is given by [51]
|J5(z)| < cox™3 forall >0 and z > 0, (5.11)

where ¢y = 0.7857 - - - .
When ¢ < n, using (5.11) and [31, (10.6.1)]

2J51(x) = Jp—2(x) — Js(2),

we find that ,
4
(xéJK_l <7T")> <ntrEnia ¥ (5.12)

Then a partial summation using (5.10), (5.12) and (5.11) yields

S 2K 4
3D % Tes (Z”> <rre (08 £ uns. (5.13)

pEP |pM|c<n

When ¢ > n, we get another bound

| 4 ! 5
($_2JK1 <7m>) <nzx 2 forz>n (5.14)
T

by |Jg_1(z)| < (m{?();)ﬂ [31, (10.14.4)] and |Ja(x)| < 1 [31, (10.14.1)]. Remember K > 2 here. We do a

partial summation again using (5.10) and (5.14) and get
S(n,n,c, xvik 47n
S| 3 Smmelihie, ()| < o+ (5.15)
pEP |pM|c>n ¢ ¢

From (5.13), (5.15), (5.9) and P =<y n7, we finish the proof. O
Combining Proposition 5.2 and Proposition 5.4, one observes the following bound:

Proposition 5.5. With the same setting as Proposition 5.2, we factor Bi = t,u?w? with t, square-free,
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U |M>® and (wp, M) =1. Then

dim S5 (N,v)

I(K -1 » )

(4(7m)K)1 Yo lar))? e (A5 +un)is
=1

5.2 Bounds on qAb/ and ;ﬁ\

In this section, all of the implied constants among the estimates for % and ¢A> depend on N and the multiplier

system v unless specified. Recall the definitions (5.1) and (5.2). To deal with the I-function in the denominator

of ¢, we need [31, (5.6.6-7)]

[(z)” < |D(x+ z'r)|2 < F(z)2 for x >0 and r € R.
ch(mr) — - N

Recall (5.1) and (5.2) that we define ¢ for k > 0. We also have

R n2e i
¢(r) = sh(rr)(ch(27r) + cos(nk))T(2 — & +irD(3 - & —ir)

. {cos EX ch(mr) ((E(l +2ir) — (1 — 2i7“)) — isin E% sh(rr) ((E(l + 2ir) + (1 — 2ir)>} :

Like [44, after (5.3)], we define & as

ex(r) = im2e 5 ™
T T S E i —E i)
Then
£4(r) <1 for r € [-1,1],
”
g = |r|kem!] for r € (—o0, —1] U [1, 0).

We refer to [52] for estimates on J-Bessel functions. Denote

Ju(z) +J-u(2)

Ju(2) = Ju(2)
2cos(umr/2) '

F.(2) = 2sin(pr/2)

Gu(z) =

As a result of the relationship Ja;(u) = J_g2;-(u) for r,u € R by [31, (10.11.9)], we have

_ Im Jgir (’LL)

_ Redurlw) (g g ) = sh(mr)
T

Foir(u) = ch(rr) e R.

Moreover, for k € Z + % and k£ > 0,

QG(T) = w /O°° (sz(u) cos %T — Py (u) sin kﬁ) Mdu

and ¢(r) = ¢(—r) for r € R because F,(z) = F_,(z) and G,,(2) = G_,(2).
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Lemma 5.6. Forr € [—1,1], uniformly and with absolute implied constants we have

In(3), we0,3],

Gair(u) < (5.21)

w2, we]|

RN

Proof. First we deal with the range u € [0, 2]. The series expansion of G, is given by [52, (3.9), (3.16)]:

o (Areh(rr)\ P S (21 (u/4)" sin(2r In(u/2) = da0)
Gair(u) = (Wsh(wr) ) — 0 H?io(j + 4r2)1/2

= () i (ot (2) - ra) <0 ((2)).

where ¢, = arg (1 4+ ¢+ ir). The implied constant in the second equation is absolute. As a function of r,
¢2T70 e C> [0, 1] and limr_m ¢2T70 = 0. Then ¢2T,0/7" = 0(1) and

Gt <7720 (20 )+ ool) +0 ( (3)')
<In (g) +0(1).

For the range u > %, we check with [52, (5.16)] where Us(p) for s > 0 are fixed polynomials of p whose
lowest degree term is p®:

472 \7 e, 1
G2ir(u)—<4r2+u2> (\/m+0(4r2+u2))

2\ —i 2\ —%
2 , U 2, U
<<<r+4) +O<(T+4) )

Our claimed bound is clear as r? > 0. The implied constant above is absolute due to [52, (3.3)] and [53,
Chapter 8, §13] or by [53, Chapter 10, (3.04)].
O

Lemma 5.7. Forr € [—1,1], we have

16(1+2ir)| < 1, |p(r)| < (az)". (5.22)

Proof. A trivial bound of Jo;, is given by the integral representation [31, (10.9.4)]:

Ju(z) = (z/2)/0 cos(z cos 0)(sin0)*df, Rev > —%.

VAl (v + 3)

4 VT
Then we have |Ja;-(u)] < T T3] and

% d
|¢(1+2ir)|<</ §§1n4 for r € [~1,1].
3a
8z
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This implies that

ch(wr) /000 ngr(u)@du <1 forrel-1,1].

Let the closed interval o, 8] = ) when o > 3. With the help of (5.20), (5.19) and Lemma 5.6 we get
d7u

301 < e (| [ oo 4| [ Fanwro )

d
<</ In (3)—u+/ w3 du+ O(1)
g V2 v Jgg

8x

du
U

+

3a\” R
< (ln 16a:> +0(1) < (az)®.

The last inequality is because a = 47vmn > 0 has a lower bound depending on v. O

When we focus on the exceptional eigenvalues A; € [, ) of Ay, recall that \; = § + 77 for r; € i(0, 7].
By Proposition 4.7, if we write ¢; = Imr;, assuming Hy (2.15) we have an upper bound ¢; < g when r; # %.
Moreover, since the exceptional eigenvalues are discrete, we also have a largest eigenvalue less than %, hence

a lower bound ¢ > 0 (depending on N and v) such that ¢; > ¢.

Lemma 5.8. With the hypothesis Hy (2.15) for § < %, when r =it and t € [t, 4], we have

F(1+21) < (g)ﬂt and  H(r) < (%)Qt + (g)% < (%)9 + (f)‘9 (5.23)

a

Moreover, for r = 7 we have

- +1 N
(;S(l:l:;><<(z> and ¢(;><<

Proof. As in the previous lemma, when ¢ € ¢, g], the bound [31, (10.9.4)] gives

-

5, k:

Y

(5.24)

—~

gle I8

~—  —
[N

Ol Nl

, k=

+2t

3a
w ~ 2 du ay+2t
_u 142 o< (=) .
|Ji2t(u)‘ < 1—‘(% —0) and IQS( t)‘ < /2‘; v U < (m)

The bound for ¢ follows from (5.17). When 7 = £, by [31, (10.16.1)] we have

J

() <u 2 and Ji(u) < w2 sinu < ul.

SIS

The bounds for 5(1 + 3) and %(i) follow from the same process above with (5.1) and (5.3). O
For the range |r| > 1 we have

Lemma 5.9. [/4, Lemma 6.3] Let k = § or 3. Then

a

k—3
~ r 2 r>1
r) < ’ - 5.25
¢(r) { r* mi ,r*%%), r > max(2,1). (5.25)

Remark. In the original paper they stated the result for k = :I:%. However, the power 7* in the estimate
above only arises from & (r)e™™"! (5.18) and by (5.19) we get the above lemma for weight k = 3.
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5.2.1 A special test function

Here we choose the special test function ¢ again which satisfies Setting 4.9 to compute the terms corresponding
to the exceptional spectrum r € i(0, 4] in Theorem 1.7. However, in this case we focus on weight k = 5 or %

Let A € 2, 1) be an exceptional eigenvalue of Ay on I'o(NV), we set A = s(1 — s) for s € (3, 3] and

167 4
t:Imr:\/ )\—\/Z—s(l—s)—s—%.

Since the exceptional spectrum is discrete, let the lower bound for ¢t > 0 be t depending on N and v. Recall
Setting 4.8. Let 0 <T' < T < £ be T" := Tz % = 2129, We choose ¢ as in Setting 4.12.
Now we take r = it € i(0, ] When u < 1.999, by the series expansion [31, (10.2.2)]:

o0

1= () S ()

we have
J (/2P o By 0 1.999 5.26
- — <1 . .
26(W) = pgop * ((2) ) Sus (5:26)
The implied constant is absolute. Now we compute the bound for % and (5

Lemma 5.10. Assuming Hy (2.15) for 0 < ¢ and with the choice of ¢ in Setting 4.12, when r = it € (0, 5],

T(1— 2t)

220(22 — 1) a2t
_ el 10 —2t,.2t—§ 1
2T (1 — 2t) ( ) +0 (a7 +1),

Y 1 Eoruy 2 ¢( ) —2t,2t—6
H(1—2t) = ———— = ——du+O0 (a 1
/ <2> ' Y (5.27)

Proof. When 1.999 < —= < 3¢ we get # < a and (E(l —2t) = O(1) by Lemma 5.8, so the lemma is true in
this case. Whe (5.26),

oo [ o[ 3 )
I‘(12i152t)/ —2=1g, 4 F(12_ o (/:;T / >u2t1¢(u)du
+0 (/0 u1_2t¢(u)du>

i () e 0t

Recall that we always have the lower bound ¢ > 0 for ¢ = Imr. A bound for I; and I, follows from the same

process as [14, Proof of Lemma 7.2]:

2z
11+Iz<<</ / ) u 2 p(u)du < a2 2?0,

PEEYY
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We also get

and finish the proof. O

Lemma 5.11. Assume Hp (2.15) for < &. For r =it € i(0, §] we have

1
5-

~ 5 cos tFlJrEthFQt 22t — 1)z? 20 >
(5 — 5 4 t)22x2 (ma)?t 2t z
Moreover, ‘
5 2% (V2 -1)(2)7 + Oz 0(2)s + 1) for k=1,
1) = smi anl §ranl
CTU-HUD 0 (D +1) Jork=§

The implied constants only depend on N and v.
Proof. When t € [t, g], we substitute Lemma 5.10 into (5.2) and use Lemma 5.8 to get
ir2e'st (cos(kz7T mt)p(1 — 2t) — cos(& + mt)p(1 + 2t))

isin(rt) cos(2mt)(L — & —)I'(3 — £ +¢)

m2e'5 cos(EE — mt)22t(22 _1)(3;/@)% L2062t
sin(rt) cos(2nt)['(§ — § = O)0(% — ’§+t)2tl“(1—2t)+0( Hm“)'

With the help of the functional equation of the I' function

olit) =

l
2

rzra-z =

Sn(m2) for z € C\Z

and the trigonometric identities

sin(§ —x) =cosx, 2cosxcosy = cos(z +y)+cos(x —y) forx,ycR,

we have

™

P T R = 2cos(wt)[(2t),
ﬁ =T(3+%&+1t)cos(EF + 1),

and  2cos(EF — mt) cos(EE + mt) = cos(2rt).

Then the first part of the lemma follows. The implied constant only depends on N and v because ¢ € [t, g] is
bounded above and below away from O.

When t = i, the process is similar to the proof of Lemma 5.10 with the help of (5.3). First we deal with
the case k = 1 with cosu = 1+ O(u?) for u € [0, 3]. A(%) =0(1)
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in this case. , we have a < x and

—e% [ Tuddute® </2I /IT> u” % ¢(u)du + O(1)

2x+2T

- tevE-o) (5) +o (0 (2)) o

The case for k = 3 is similar using sinu = u + O(u?) for u € [0, Z]. O

5.3 Proof of Theorem 1.7, same-sign case

The proof depends on the following two propositions for the Fourier coefficients of Maass forms, which were
originally obtained for the discrete spectrum in [47, Theorem 4.1] and [12, Theorem 4.3]. The author proved
the generalized propositions in §4.4 to include the continuous spectrum. Recall our notations in Settings 4.8
and 4.9. Recall Proposition 4.14 and Proposition 4.15. Before we start the proof, we need to make a few

remarks about the weight k:
(1) The trace formula (Theorem 5.1) works for k = 1 and 2.
(2) The estimates on $ and 5 in the previous section work for k = % and 3.

(3) Proposition 4.14 and Proposition 4.15 work for k = £ and —3.
Therefore, in this section, we separate the proof of Theorem 1.7 into two cases k = % and f%. In the second

case we will apply the Maass lowering operator L 3 (2.11) to connect the eigenforms of weight % and weight
1

5
We declare that all implicit constants for the bounds in this section depend on N, v and €, and we drop
the subscripts unless specified.
Since the exceptional spectral parameter r; € i(0, 1] of the Laplacian Ay on I' = T'o(N) is discrete,
t; = Imr; has a positive lower bound denoted as ¢ > 0 depending on N and v. We also have 2Imra < 0
assuming Hy (2.15) by Theorem 4.7. Recall the definition of A(m,n) and A,(m,n) in (4.43).

1 131 131

1 1
Wi 4 u,)? < (MA)FE 4 MUl 4 iUl 4 (Umtn)?,

A(m,n) = (B + uy) % (725

wh—t

1

1 1
Au(m,n) = A(m,n)i (mA)16 < (IA)5F + MIEAT6 4l + mIsufn e + (M) 16 (Umi, ) F.

—~

Recall the notations in Setting 4.8 and Setting 4.9. The following inequalities will be used later in the proof:
A(m,n) < Ay(m,n) < (M) (5.28)

B
(ﬁ) A(m,n) < Ay(m,n) for0< B <=, when x> A,(m,n)> (5.29)

x

N W

5.3.1 On the case k = %

Let p;(n) denote the coefficients of an orthonormal basis {v;(-)} of ﬁé (N,v). For each singular cusp a of
I' =To(N), let pa(n,r) be defined as in (4.3). Recall the definition of 7;(m,n) in Theorem 1.7 and the

84



notations in Settings 4.8 and 4.9. We claim the following proposition:

Proposition 5.12. With the same setting as Theorem 1.7 for k = %, when 2x > A, (m,n)?, we have

S(m,n,c,v) 26,—1 x? 71
P D D A —1)Tj(m’n>28j7_1
r<c<L2z r;€i(0,%]
Nle

< (asé + Au(m, n)) (iz)". (5.30)

We first show that Proposition 5.12 implies Theorem 1.7 in the case k = %, which follows from a similar
process as [14, after Proposition 9.1]. Recall that 2Imr; = 2s; — 1 for r; € i(0, ] and that the corresponding

exceptional eigenvalue \; = % + rjz = 5;(1 — s;). The sum to be estimated is

X2Imr;

3 M _ ) (5.31)

Nle<X 7;€4(0, %]

where

1 e ov1e T(si+ 1)T(2s5 — 1)
73 (mym) = 208 pj{m)p (m)! =20 (i)' o A
J 4

Since t; = Imr; € [t, 3] and s; =Imr; + 1 € [t + 1, 2], the quantity

T(s; + 5)T(2s; — 1)
F(Sj — i)

7T172Sj 41751'

is bounded from above and below. By Proposition 4.15,

1

TUR) oy (m)py () )= < A, m) i) 5=+ (532)

28j—1

When X < A, (m,n)?, since A(m,n) < (mn)7 by (5.28),

X2$j—1 o 4 9
< A(m,n)|mn|z =% A, (m,n)*5~

= A(m,n)* 3 [ma|s 15 < Ay (m,n)(ma)°.

Tj(m,n)

So in this case we get Theorem 1.7 where the 7; terms are absorbed in the errors.

When X > A, (m,n)?, the segment for summing Kloosterman sums on 1 < ¢ < A, (m,n)? contributes a
Oy (A, (m,n)|mn|?) by condition (2) of Definition 1.6. The segment for A, (m,n)? < ¢ < X can be broken
into no more than O(log X) dyadic intervals z < ¢ < 2z with A, (m,n)? <z < £ and we use Proposition 5.12

for both the Kloosterman sum and the 7; terms. In summing dyadic intervals, for each r; € (0, %], we get

lrlog2 (X/Au (m,n)Q)—|

Z (2251_1 — 1)7—,] (m7n) E 2si—1
28j -1 2€

{=1

7j(m,n) x285—1 (1 _ 2(172%)(1og2(X/Au(m,n)2)]) '
25j — 1
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X28j —1

The difference between the above quantity and the quantity 7;(m,n) 3 n (5.31) is
i —
XQijl .
Tj(m,n) - 9(1=2s)[loga (X/Au(m.n)*) | mAu(m, n)*i72 < A, (m,n) (5.34)
28]' —1 2Sj -1
by (5.32). In conclusion, for X > A,(m,n)? we get
S(m,n,c,v) X281
Z ¢ - Z Tj(m’n)gsj_l
Nle<X 75€1(0,%]
S(m,n,c,v) X?2si—1 .
=Y TR S g + O(Au(m,n)inif)
Ay(mn)?<e<X 7, €i(0,3] J
1 X/Au(mn 2 L
B |_0g2( /Z( ) )-‘ S(m,n,c, I/) B Z (223].,1 _ 1)Tj(m, n) X 2s;—1
B c ‘ 2s; — 1 2¢
=1 L[ S - 7'j€l(0,%]

+ O(Ay(m,n)|mnl%)
(X6 + A, ( ) |mnX|°

where the second equality follows from (5.34) and the last inequality is by Proposition 5.12. Theorem 1.7

follows in the case k = %

The proof of Proposition 5.12 takes the rest of this subsection. For r; € (0, ﬂ, by Proposition 4.15 we
have

Vi pj(m)p;(n) < A(m,n)(ma)*.,

Recall that a = 47v/mn and 6 = % in Setting 4.8. Thanks to Hé (2.15) and Proposition 4.7, when
rj = it; €i(0, %] we have 2t; < § = %. Since 2z > A, (m,n)? by hypothesis, it follows from (5.29) that

_ - o2t .
vmn p;(m)p;(n) (a%‘ + por + 1) < Ay(m,n)(mn)c.

Applying Lemma 5.11 where t; € |t, g] and recalling the definition of 7; in Theorem 1.7, we get

4\/ﬁﬂj( ) ()qg(r])

h
AT - (5.35)
A 7)) .

= (2%~ = )7;(m,n)

When 7; = % and k = 3, Lemma 5.11 and (5.29) give

Winn %&(g) =2(v2 - Drj(m,n)at +0 (x%—ﬁ(ﬁm)s) . (5.36)
4

With the help of (5.35) and (5.36) we break up the left hand side of (5.30) to obtain the following analogue
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o [14, (9.8)]:

S(m,n,c,v) 281 x2si~1
Z - . Z (27 *I)Tj(mvn)ﬁ
z<c<{2z r;€i(0,1]
Nle

IN
e
3
S
o
S
|
=
3
S
o
S
<
~—
(S
~—
+
.
—
/N
+
L
N
3
S
™
~—

r<c<2z Nlec>0

C
N|e>0 r;€i(0,1]

| 3 e 8y _umm y almag

— S +0 ((x%*‘; + Ay(m, n)) (ﬁm)s) s

The first sum S; above can be estimated by condition (2) of Definition 1.6 as

S
Sl § E ‘ (m,n,C7 I/)| <<N,y,675 x%fﬁ(mﬁx)g'
rz—T<c<z ¢
21<c<2x+2T
Nlc

We then prove a bound for S;. By Theorem 5.1, we have

o7 N 2ames(n) 5 — o(r)
SQ < |u%| i \/%7‘;0 Chﬂ.'rj (Tj i Fsmguzlar a pa e pﬂ(n T) hﬂ'?”drr

5.3.1.1 Contribution from holomorphic forms

(5.37)

(5.38)

(5.39)

For k = } or 2, recall the notation %, before Theorem 5.1. For [ > 1, let {F};(-)}; be an orthonormal

basis of Si42:/(N,v) with Fourier coefficient ar;;. By Proposition 5.5, uniformly for every [ > 1 with

d; := dim Si49;(N, V), we have k + 2] > g and

(k+2l—1
(4m) k21 () S5 ZQFJ’ Jarji(n)

Nl=

k+2l71 k+2171
< dmn)Era—1 Z| ar,ji(m (Amm)k+2—1 Z|aFﬂl
j=1

< (mfg + Up)

[N
Ll

(AT +uy,)2 (AR)°.

We also have

S (b2 -1+ <142
=1
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by [20, Lemma 5.1 and proof of Lemma 7.1] and Lemma 5.8. Note that [20, Lemma 5.1] is only for k = 1,

while the same process works for k = % Then the contribution from U is

o0

+2[ (k+2171
Z: k+21)(4 )k+21 1 k+21 1 ZaFJl aF,jJ(n)
<(1+ ) (73 + )t (2% +un>%<mﬁ>s.

Recall a = 4nvmn and (4.43) for the definition of A, (m,n). Since
1.3 131 1
and  u, € ugns < (N2 + u,)ins,

we get (132 + )2 (132 + u, )2 < Ay (m,n). Moreover, since

o
=
9
[

.19 131,39 _ 131 3.9 3.9 . 3
n 5+1 <& 294 1T%s S (n 94 —‘-un)zlnt;7 N, <K uﬁns S (n 94 +un)4n ,

and 2z > A, (m,n)? by hypothesis, we also get

Finally we conclude
U < Ay(m,n)(mn)® for k=1 or 3. (5.40)

5.3.1.2 Contribution from Maass cusp forms and Eisenstein series.

We combine the two propositions at the beginning of this section and bounds on qAS in Section 4 to estimate
the contribution from the remaining part of S (5.39) other than Uy. The process is the same as §4.5 for
|r] <1 as (;AS shares the same bound as ¢ there. We record the bounds in the following equations.

Fix k = % In the following estimations we focus on the discrete spectrum 7; > 0 because each bound
for r; € [a,b] for any interval [a,b] C R is the same as the bound for r € [a,b] U [—b, —a] in the continuous
spectrum. This is a direct result from Proposition 4.14 and Proposition 4.15. Recall that 22 > A, (m,n)? in
the assumption of Proposition 5.12.

For r € [0,1), we apply Lemma 5.7, Proposition 4.15 and Cauchy-Schwarz to get

Mgm) < A(m, n)(miz)°. (5.41)

< A(m,n)R? (mi1)?, (5.42)
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with the help of (5.29) we have

82

p] ( )(b(rj)

<Lr:
ch7r T

D>

ref[l,%

/ S(r _er

< A(m,n) (z) (iz)® < Ay (m, n)(mic)°.

(5.43)

[N

Let
P(m,n) := 2(mit)s A(m,n)"2 > 1.

Divide r > max(%,1) into two parts: max (£,1) <r < P(m,n) and r > max (2,1, P(m,n)). We apply
Proposition 4.15 on the first range and ngS(r) < r~! from (5.25) to get

max(2,1)<r; <P(m,n)

p]( )p]( )¢(TJ)

chrr; < Ay (m,n)(mnx)® (5.44)

by partial summation as in (5.43). We divide the second range into dyadic intervals C' < r; < 2C. Applying
Proposition 4.14 with 3 = 1 + ¢ and QAS(T) < min(r—,r72Z) from (5.25), we get

PJ( )pj(n) ~
W@W"j)

Vi Y

CSTJ' <2C

5.45
< min (c—l, 0—2%) c-% (02 + (it RO+ (mﬁ)%) (ifz)® (5.45)
< (min (Ch,c732) + (¥ +at)od + (mA)EC ) (mia)®
Next we sum over dyadic intervals. For the first term min(Cz,C~2 %), when

j>1: 270=2 Jj=1
C>P(m,n)
and when
1 1T 1T 1T > J X % x %
i CE,C‘E—) —c3Z. c 3L <N o4 (7) (7) .
mm( T T 2 _ T = Z ) <\7T
§>0: C=2i & §j=0

So after summing up from (5.45), recalling T < z' % in Setting 4.8, using C > P(m,n) and (5.28), we have

Vinh Z PJ( )pj(n )éf)(rg)

chmr;
rj>max(%,1,P(m,n))
1 5.46
< ((;) * ¥ (4 7)¥ (ma) " T5 A(m,n) T + <mn>%A<m,n>i) (mia)® (0:40)

< (x* + () wA(m,n)%) (mfz)°.
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Combining (5.44) and (5.46) we have

pj(m)p;(n) ~
Tm¢(rj)

Vin Y

rj>max(%,1)

< (m“ + Ay(m, n)) (maz)°. (5.47)

From (5.37), (5.38), (5.39), (5.40), (5.41), (5.43), and (5.47), we get

1.2ij1

S(mvnacv V) 2s;—1
Z - Z (2797 — 1)Tj(man)25j7_1
r<les2x r;€i(0,%]
Nle
< (x%—‘s +2d 4 Au(m,n)) (mnx)®.
Proposition 5.12 follows by choosing § = % We finish the proof of Theorem 1.7 in weight %

5.3.2 On the case k = —%

Recall the remark after Proposition 4.15. Let p;(n) denote the Fourier coefficients of an orthonormal basis
{v5(-)} of Lz (N,v). For each singular cusp a of (I',v), let Eq(-,s) be the associated Eisenstein series in
weight 3. Let pf,(n,r) be defined as in (4.3) associated with E/(z, 2 +ir) for r € R.

Recall the definition of the Maass lowering operator Ly, in (2.11) and Hp (2.15) for § = 5. By [54, (4.52)]
(where they used Ay for the lowering operator and A(s) = s(1 — s)), the set

_1 , .
{vj = (15 "‘7”32') 2 L%v;- try# i} is an orthonormal basis of @ L_1(N,v,r;).
TiF

Combining [54, (4.36), (4.27) and the last equation of p. 502], for r; # i and 1 > 0, since
Ls (W%ﬁﬁlmr(élﬂfzy)e(ﬁx)) =—(&+ TZ)W_%,Im,.(élﬂﬁy)e(ﬁx),
the Fourier coefficient p;(n) of v; satisfies
pi(n) = —(55 + r2)%p;(n) for r; # %, 7L >0, (5.48)

and then
i) < [pf(n)] if|ry] <1, Tmr; <& and |pi(n)| < rlpj(n)| ifr; >1, (5.49)

where the bound 2Imr; < 6 is from Proposition 4.7.
In the case r; = £, (2.13) and (2.14) show that p;(n) = 0 and

7i(m,n) =0 for it > 0, r; = %. (5.50)
Moreover, by [54, (4.48)], if E4(z, s) is the Eisenstein series defined in weight —%, then

LyEl(z, 4 +ir) = (2 —ir)Eal(z,s) and (& +12) 310, (m.0)] = [pa(n,v)].
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We also get
pa(n, )| < lpa(n,r)| ifre[-1,1]  and |pa(n,7)] < rlpg(n,r)| if [r] > 1. (5.51)

We have the following proposition:

Proposition 5.13. With the same setting as Theorem 1.7 for k = —3, when 2z > A,(m,n)?, we have
g 7 2s;—1
> ST S gt 2 (o A e
r<c<2xw rjei((),g}

Nle
Note that here 7;(m,n) is defined in weight —3, i.e.

F(Sj — i)F(ZSJ — 1)

Ll —2s ~ ~\1—s,
rym, m) = 203y o ()= aai) ! ==

where p;(n) is from (5.49) as the Fourier coefficient of v; € Ij_% (N,v,rj).

The proof that Proposition 5.13 implies Theorem 1.7 in the case k = —% is the same as the case of weight
1 before. This is because 7;(m,n) = 0 for r; = % (5.50) and because (5.32), (5.33) and (5.34) still hold for
r; € 4(0, g] (the process only involves estimates on p;(n) with some applications of Proposition 4.15 in weight
—%) In the rest of this subsection we prove Proposition 5.13.

First we show that the main terms corresponding to r; = it; € (0, g] are the same when we shift the
weight between —% and % Recall s5; = % +1;. Let TJ’» (m,n) denote the corresponding coefficients for z2% —1

in weight %:

mi———— (3 +t)(2t;
Ti(m,n) = 2¢i P (m)pf(n)m =% (4mn)z ~"4 —(4 I, )2t
where p;(n) is defined at the beginning of this subsection.

We claim that

7j(m,n) = 7;(m,n), for m,n >0 and r; € (0, §]. (5.52)

When r; = ﬁ, this is true because both of them equal to zero by (5.50) and I'(0) = co. When r; € (0, g],

1, D3 +15)T(2t))

B E RS

_, TE+4)/(3+1)
(=3 +t)T(=5 +1;)

Nl

I'(2t))

Recall that the definition on qg (5.2) is for weight k£ > 0 and here we use (E for weight % We derive

2s5;—1

Wy Pg( )p;(n )¢(Tj) = (22571 — )7/ (m,n) -’

chrr; j 25, — 1 + O (Ay(m,n)(mn)°). (5.53)

by the same process as we derive (4.49) above. Since 7/(m,n) = 0 when r; = %, we have 2t; <0 < § (with
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0 = &5 (2.15) and § = % chosen later) by Proposition 4.7 and still get

xZijl

S(m,n,c,v) 96,1 ,
—_— 7 7 7 _ 9245j — 17 -
y S > yrim. )5y
z<1\c/v|§621 r;€i(0,5]

s Smmer) g Smnen) (4)|+ O (Aulm,m) (i) (5.54)

<
c c c
z<c<2z Nle>0
Nlc
S(m,n,c,v) 0;(m)p)(n) ~
4 SAUCLE L Lo (,) 4V Pi\TR ) 5
Z c Z chmr; ¢( i)
N|e>0 r;€i(0,4]

=: Sg +0 (Au(m, n)(ﬁ%ﬁ)s) + S4.

The first sum S3 above can be estimated similarly by condition (2) of Definition 1.6 as

S(m,n,c,v 15,

S5« Y Blmmenl o ety
z—T<c<lz ¢ (555)
20<cL2z+2T

Nle

By Theorem 5.1,

S0 iy + Vi 3 00 pf,”(rmﬁ 2 / pamrpamr)"ffr)dr

7;>0 singular a ¥

The bound for U 3 is done in (5.40). Estimates for the remaining part of S; follow from the same process as
§5.3.1.2 in the case of weight %, taking (5.49) and (5.51) into account. For the same reason as the beginning
of §5.3.1.2, we just record the bounds with respect to the discrete spectrum here.

For r € [0,1), we apply Proposition 4.15, (5.49) and (5.7) to get

PJ ()

ch7r T

py(m)pl(n) )p]( n) ~
chmr;

Vi 3

rel0,1)

< A(m,n)(mnx)®. (5.56)

(7‘]) < Vmn Z

r€l0,1)

(1)

For r € [1, %), we apply Proposition 4.15, p}(n) < rj_1|pj(n)| from (5.49), and (g(’f‘) < 1 from (5.25).

Since

PJ( )pj(n)

chmr;

s(R) := Vmn z

r€[l,R]

< A(m,n)R? (imit)* (5.57)
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by Cauchy-Schwarz, with the help of (5.29) we have

Vi Z )p]( )¢>( | < ViR pi(m)pi(n) _o
ch7r Tj . chmr; J
ri€[l, % ri€[1,%)
< r72s(r) ::1 + /1 s(r)yr=3dr (5.58)

We still let
P(m,n) = 2(ma)s A(m,n)"7 > 1

and divide 7 > max(%, 1) into two parts: max (2,1) <r < P(m,n) and r > max (2,1, P(m,n)). In the first
range, we apply Proposition 4.15, (5.49) and ¢(r) < 1 from (5.25) to get

— ARIACE

chrr; < Ay(m,n)(mnz)® (5.59)

é(r;)

max(%,l)ﬁ'f‘j <P(m,n)

by partial summation similar as (5.58). We divide the second range into dyadic intervals C' < r; < 2C and
apply Proposition 4.14, (5.49) and qg(r) < min(1, %) from (5.25):

\/% Z pj(ch)ﬂ_p,j‘ n) A (’1"]) < F Z pj(ch)ﬂ_p;( )rj 2(’5(”)
C<rj<2C J C<r;<2C J
<min (1, 52) € (CF 4 (0¥ +4)CF + (i) O ) (iia)° (5.60)

< (min (C%,C*%%) + (it +ah)CE + () O R ().
Summing up from (5.60) similar as we did after (4.58) and recalling 7 < '~ in Setting 4.8, we have

mn
rj>max(%,1,P(m,n))

p;(m)pf(n) ~

chmr;

(1)

< <( T)§ + (4 ) (i)~ A(m, n) T + (mn)feA(m,n)i) (Ffiz)® (5.61)
< (x + (1 )%A(m,n)i) (mfz)°.
From (5.59) and (5.61) we have
Vi Y %m )| < (x +Au(m,n)) (MiAz)°. (5.62)
rj>max(%,1) J
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Combining (5.54), (5.55), (5.40), (5.56), (5.58), and (5.62), we get

1.281'71

S(m,n,c,v) 2s;—1
P S A e S A 248j — D7 -
S A > P
$<I\(}|§52I r;€i(0,%]

< (m%—‘s +z% 4 Au(m,n)) (mnx)®.
Proposition 5.13 follows by choosing § = % and we finish the proof of Theorem 1.7.

Proof of Theorem 1.9. The proof follows from the same process as [14, §9.2]. Note that we need to restrict
Z?”j:i 7j(m,n) = 0 when m > 0, 7 > 0 and k = } (and the conjugate case i < 0, 7 < 0 and k = —3 by

(1.13)), otherwise the sum may not converge. O
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Chapter 6

Partitions of rank modulo 3

In this section we prove Theorem 1.11, with help from Theorem 1.7. The idea is essentially the same as [7],

[21]: we construct a particular weight % Maass-Poincaré series, whose holomorphic part of their value at

3
4

and absolutely when Re s > 1 by definition. To prove their convergence at s = %7 we need the uniform bound

s = 4 is the rank generating function q_iR(w; q). These Maass-Poincaré series are convergent uniformly

in Theorem 1.7.

6.1 Proof of Theorem 1.11, main line

Now we use the theorems in Section 1 to prove Theorem 1.11. We follow the outline of [7] and the idea is
that q_ﬁR(w, q) is the holomorphic part of a Poincaré series whose Fourier coefficients can be explicitly
calculated.

Recall the notations in Section 2.3. Let v be an admissible multiplier system on I'g(N) where o, > 0 and
B, M, v' and D be as in Definition 1.6. Let

Ms(y) = |y|_§M% sgny, s—%(‘yD a‘nd @S,k(z) = MS<47Ty)€($)

where M, s is the standard M-Whittaker function. One can check that ¢, 1 (z) is an eigenfunction of ﬁk

with eigenvalue s(1 —s) + k{%. We define the Maass-Poincaré series by

Py(s,m, N; z) = ﬁ 3 7()(cz + d)Fipy g (iy2). (6.1)

v=(28)era\ro()

By [21, Lemma 3.1], when Re s > 1, the above series is absolutely and uniformly convergent (in any compact
subset) . As in [21, Theorem 3.2 & Remark (1)], we have the following theorem for P (note that we have
replaced their 2 — k by k). Recall that Hj denotes the space of harmonic Maass forms of weight k in
Definition 2.3.

Theorem 6.1. With the notation above, when k < —% is half-integral and m < 0, we have

Pi(1— %, m,N;Bz) € Hy(Lo(M), (12)3h)
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and

—k _
Py (1—%m N;2) = ﬁ(r(l — k) —T(1 -k, 4z|m|y))q™
+Y Bn)g" + > B ()T (1 — k,4x|ily) ¢,

n>0 n<0

where
~ 1—k ~ ~
ke | S(m,n,c,v) 4/ ||
B(n) =i "2r = Z . Iy C
Nle>0
and
k _—— —
, TR || 2 S(m,n,c,v) 4/ |mn]
- m AULLCICE Ry S i AL ) I
A =ra=wl7 2 c Lk c
Nle>0

This theorem also holds when k = %, provided that we ensure the convergence of the formulas for f(n) and

B'(n). We can guarantee the convergence of these formulas for any admissible multiplier v satisfying o, > 0.

We prove Theorem 1.11 assuming Theorem 6.1 in this section and prove Theorem 6.1 in the next section.

Define the theta function as
0(z;h,N) := Z nger.
n=h (mod N)

It is well known that the above theta functions are holomorphic cusp forms of weight % whose transformation
formulas can be computed via [55]. Moreover, Bringmann and Ono [8] showed that some period integral of a
linear combination of such theta functions can be added as a non-holomorphic part to q*le?R(w; q) to get a
harmonic Maass form. We call that combination a shadow of ¢~ 21 R (w; q).

When w # 1 is a root of unity, by [56, Theorem 7.1] we know that ¢~ 21 R(w; q) is a mock modular form

of weight % with shadow proportional to

(w% - wié) Z (1n2> nw%qTz (6.2)

neZ

Hence the shadow of qulTlR(fl; q) is proportional to 6(z;1,6) as [7, Remark, p.251] and a computation
shows that the shadow of q_iR(e

operator £ maps a weight k& harmonic Maass form to its shadow.

We take our weight £ multiplier system v = (%)777 on I'g(3) to define the Maass-Poincaré series Py (s, m, 3; z)

in (6.1). This multiplier is admissible with B = 24 and |D| = 4, i.e. the trivial Nebentypus. Denote

27

3 ;q) is proportional to 6(z;1,12) + 6(z;5,12). Moreover, the differential

P(z) = P%(%,O,&z), so P(24z) € H1(576,vy)

1
2

and write the Fourier expansion of P(z) as in Theorem 6.1.
2

We define M (z) to be the unique harmonic Maass form such that q_TZR(e 5 ;q) is its holomorphic part.
It follows that M (24z) is a weight 3 harmonic Maass form for some I'o(M’) and Nebentypus y’. If we can
establish the equality M (24z) = P(24z), then Theorem 1.11 is proved using Theorem 6.1. The rest of this

section is devoted to proving this equality.
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Decompose P(24z) and M (24z) into holomorphic and non-holomorphic parts as

P(24z) = Py(242) 4+ Py (242) = ¢ + Z B(n)? "t + P (242), (6.3)

n=1

M (242) = My, (242) + M (242) = ¢ 'R(e5 5 ¢?4) + M (242). (6.4)

Lemma 6.2. M(z) is a weight 3 harmonic Maass form for (Io(3), (%)VT,)

Proof. We begin by investigating the shadows. Recall that Si(N,v) is the space of holomorphic cusp forms
on I'g(N) with multiplier system v. By combining Lemma 2.4, Theorem 6.1 and the definition of 5%, the

shadow of P satisfies

Paa(2) 1= £3(P(2)) = &3 (Pan(2)) € S3(3, (3)n). (6.5)

Direct calculations using (1.19) yield Psna(32) € 53 (9, v3).
On the other hand, since 5% maps M(z) to the shadow of q’ﬁR(e

%51 q), we see that §1(M(2)) is

proportional to

Msha( ) *0(2;1712)4’0 Z; 5 12 ZX 36

where x_36 is the Dirichlet character modulo 12 induced by (=%). One can check that M,(3z) =
1(2)* — (n°|UsV3)(2) where for f=377% ar(n)q¥,

(W) =3 astniaf =3 3 f (M) and (Va)e) = £032)

Clearly n® € S 3 (1, ug ). With some tedious matrix calculation, we observe

(n*|U3V3)(= ZT} < >€S%(9V)

Hence Mspq(32) € 53( ) 80 Pspa(32) and Mgpa(32) are in the same space.
Next we prove that Py, (32) and Mgp,(32) are proportional. One can check that

n(3z) € S3(9,(3)vy) and  f(z) € S3(Ovy) = [(2)n(32)" € S5(9, (3)).

Here S5(9,(3)) is a two-dimensional space spanned by ¢ — 2¢* + O(¢®) and ¢* + ¢* + O(q*). Since both
Pna(32) and Mgpo(32) have Fourier expansion

2, ol ad gG'= D (e,

n=1 (mod 24) n=7 (mod 24)

the Fourier expansion of Py, (32)n(32)7 and My, (32)n(32)7 both start with Cq + O(g*) for some non-zero
constant C' (which might be different). We get

Pona(32)0(32)" = cMsna(32)0(32)" = Papa(2) = cMgpa(2) and Ppop(z) = cMpup(2)
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for some constant c.

From (6.5) we conclude that Msna(2) € S3(3,(3)vy). By [8, Theorem 1.2] we know that M(72z) is a
harmonic Maass form on I'1(1728) and by [8, Theorem 3.4], M(z) is an entry of a vector-valued harmonic
Maass form on I'g(1). To prove Lemma 6.2, it suffices to check the transformation law on I'g(3) and we do

not need to check for the growth rate at the cusps. It is known that I'g(3) can be generated by (¢ 1) and
(Z32) = ()G E G- (6.6)

The transformation law of M (z) = ¢~ 2iv(q) as a sixth-order mock theta function can be found in [57, (4.3),

(5.5), p. 122]. Combining M}, and M, and carefully comparing the notation of Mordell integrals between

[57, p. 121]
0 —az?
e
J(a) = d
(@) /0 chaz

and [8, (2.5), Theorem 2.3, (3.2), and Lemma 3.2]

s hor + 1
J(hia)i= [ emdee® 02Ty
(5i0) /0 ¢’ ch(3az/2) “

we check that, under the transform of generators of I'y(3) decomposing as in (6.6),

M((Z34)2) =e(f) (2-32)2M(2), where (3)75(Z33) = e ()

=

with the help of (1.19).
O

Next we show that the principal part of M(z) at the cusp 0 of I'y(3) is constant. We can take the
scaling matrix oyp = (3 _1). With [8, Theorem 2.3] we can check the image of the holomorphic part
M, (z) = sin Z N(3;¢) (in their notation) under the slash operator |100. The result M ($;3z) has principal
part 0 and the Mordell integral \/zJ(3; —6miz) is bounded when Im z — oco.

Since the principal part of the Poincaré series P(z) is non-constant only at oo, by (6.3), the principal
part of E(z) := P(z) — M(z) is constant at both cusps of I'g(3). Then P,;, = M, by [21, Lemma 2.3] and
E(z) = Pn(z) — Mp(2) is in fact a holomorphic modular form whose Fourier coefficients are supported on
n— i for n > 1.

According to the Serre-Stark basis theorem [32, Theorem A], the space My (576,vp) consists of theta
functions whose Fourier coefficients are zero except those for exponents t/2 where ¢|576 and ¢ € Z. However,
E(24z) isin M 1 (576,v9) and has Fourier expansion supported on exponents of the form 24n — 1. Therefore,
E(z)=0.

It follows that ¢~ 23 R (e
shown in Theorem 6.1. Note that we are in the special case k = % an
of Theorem 6.1). This finishes the proof of Theorem 1.11.

2

5°,q) = Pu(2) is holomorphic part of P%

o, —~
=
|
(el g
|
\
NG
A
(an)
w
&+
Q
&+
@
Q.
o
-+
-+
=
]
@
=
o,

Remark. The exact formula of A(;n) in [7], which can be rewritten as (1.34), can also be deduced from a

similar process as our proof here using Theorem 6.1.
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6.2 Proof of Theorem 6.1

The only thing left is to prove the Fourier expansion of Theorem 6.1. Recall the notations in §2.3. Let M, g
and W, g denote the M- and W-Whittaker functions, respectively. For y > 0, by [31, (13.18.4)],

and by [31, (13.18.2)],

k
2

e

e

,,,,, Pl —ky), Wi s(y)=y (6.8)

227 2 20

The contribution to Py (1 — %, m, N; z) from some ¢ > 0 equals

1 —ra x _k
mz d(Z) 7( ¢ afee)(cz +d + Le)

LEL
0<a<c, ad=1(c)

4y ma m
Mg (|cz +d—|—€c|2) c (c ~Re (c(cz+d+€c)>)

1 i —(ab (ﬁm < d >’“
= ——¢ v(*%)e| — e(la ) z+—+¢
F(Q—k}) d(zc:)* (cd) c é ( ) c

4y m 1
. o = —“Rel|l ———
M1,% <C2|Z+g+€|2>e< 2 e<z+g+£>>7

where we used (1.9): (25t =v(28)v(§§) =v(2})e(—Lla,) for all £ € Z. Let

e S () (e (1)

Then f(z)e(a,x) has period 1 and f has Fourier expansion

f(z) =) ay(n)e(iz), f <z + ‘Ci) = ay(n)e ("j) e(nz), (6.10)

nez neEZ

_ 4y mx
ay(n) = /]RZ kM1—§ (02|z|2) e “ane neronx) dx

k Nk Al -
= ‘ k/ y ly M k1 & mlmly e -2 _qz) de.
[dmmy|s Jr \T + iy 2272\ ?z]? c|z|?
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By substituting z = yu,

7k k . E ~ ~
i "yc 1+iu\?2 47| | |u _
’ = M_k1_& — du.
G,y(n) |47m~1y|§ /]R (1 _ ZU) —§,§—§ <02y(u2 + 1) € ch(UQ T 1) nyu U

This integral is evaluated by [58, p.32-33]. We get

2ny/Im /] |,
T(l—k) =1
iTRHATR k) ) an? i) r by
[drimy| 5 c T

— - 4/ |mn B
21/ |m/ 7] W%l_g(llwny)ll_k <c||> , n > 0.

i ST
(4|fily) 1k <”'m”'> i < 0;

[SIESEEN e

ay(n) =

Applying (6.8), substituting (6.10) in (6.9), interchanging the finite sum on d and sum on n, and summing
over N|c > 0 we get

1—k ~ -
_k . — _ _ _ ~ 2mmz 2mwinz
Pe(1— % m,N;2) o) (T(1—k) —T(1 — k, 47|m|y))e + T;Ze
i~k2rl(1 — k 4w|ﬁ|y)‘m = S(m,n,c,v) 4/ ||
’ = éjlfk‘ - ) n < 0)
I'(1-k) n Nzc;o ¢ c
ik (2m)* *m S(m,0,¢c,v) _
~ 11—k 4 ~ =
o |7y Stmmen) (Wlmnl | .
n (& C
N|e>0

Since we assumed «a,, > 0, we do not have the term for n = 0.

It remains to prove the convergence of Fourier coefficients when k = % and «,, > 0. Since m < 0, whenever
7> 0 or < 0, the convergence follows from Theorem 1.9. Readers may notice that the original proof in [14,
Section 10] involves Cauchy’s convergence when 72 < 0. As we already proved Theorem 1.9 in both the mixed-

and same-sign case, we have finished the proof.

6.3 Asymptotics for ranks of partitions modulo 1,2,3

In this section we collect some results on the asymptotics to the exact formulas for ranks of partitions modulo
p < 3. Note that the exact formulas for p > 5 become different and we will discuss in the next chapter. Recall
the definition of A.(n) in (1.26). The first asymptotic for p(n) is given by Hardy and Ramanujan [4]: let

5= — L
n=mn— 5z, then

) exp (my/ 2 /e
p(n) ~ ! Z Ac(n)ﬁdi P(\/ﬁg,) . (6.11)
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Later in 1938, Rademacher proved the famous exact formula, by showing that [5, (5.9)]

1 z 1 d Sil’lh (ﬂ- %/C) 2mn 2 -1
W”:REEPMMWEZ“‘%T‘* + O(e*™/N" N 3) (6.12)

c=1

and letting N — oo.
Let Ry(n;x) be the tail sum:

L d [sinh(7 2 /e
Ri(n;x) == \fZA 02% (\/53)

c>x

This sum is convergent by Rademacher’s exact formula. Rademacher’s result showed R;(n,ay/n) < n*%,
which was later improved to Ry(n,a\/n) < n~2 logn by Lehmer [59]. The recent work by Ahlgren and
Andersen [11, Theorem 1.1] proved Ry (n, ay/n) < n~ 2~ 165+ and optimized the bound to Ry (n, an2*=) <«

n~2~257¢, The best estimate known today is by Andersen and Wu [13]:
Ri(n,ay/n) < n*%“t*%w*é, where 24n — 1 = tw? and t is square-free.

Recall R(w;q) defined in (1.31) and A(é; n) as its Fourier coefficient when w = ¢! = e(¢/u). As R(—1;q)
is one of Ramanujan’s famous third order mock theta functions, Ramanujan claimed a similar asymptotic for
A(L;n) = N(0,2;n) — N(1,2;n), which was proved by Dragonette in 1952 [9]:

A(l;n) =(-1)"" lexp;f <exp 2\%%)> .

1\ L&A exp(Z4/7/6) N
A(,n) —Z Vv + O(n2 logn),

for h odd, hh"” = —1 (mod 2¢) and

2c

sh,cz(fl)”% ((2c + )" (h? 24(:)/2— (c2—1>.12§ <h+c >

Andrews [10] improved Dragonette’s result as

I\ v A(c)exp(Z+/1/6) .
A (n) = ; N + O.(nf) (6.13)

for any € > 0. The exact formula was finally proved by Bringmann and Ono [7], as we have stated in (1.33).
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If we let Ra(n,x) be the tail sum

R (n ;L') ™ Z I (77'\/ 24n — 1)
) = 1 1 b
’ (24n— 1)T & k 2\ 12k

then Dragonette’s result implies Ry (n, /n) < nz logn and Andrews’ result implies Ry (n,v/n) <. n°. The
work by Ahlgren and Dunn [12] improved the bound to

Ra(n,av/n) <. p TR te

when 24n — 1 is square-free. The author got the same bound in [14, Theorem 2.3] without the square-free
requirement.

For R((3;q) = R((3;q), we have A(3;n) = A(3;n) = N(0,3;n)—N(1,3;n) = N(0,3;n)—N(2,3;n). With
the notation By, (n,m) in (1.37), in [17, Proposition 5.1] Bringmann proved A($;3n) <0, A(3;3n+1) >0
and A(%; 3n+2) <0 forall n ¢ {1,3,7} based on the asymptotic formula [17, Theorem 1.1]:

A (;)n) = (2;1\/33)5 > Wsmh (ﬂﬂg:_l) + 0.(n).

Bringmann and Ono claimed in [21] that this formula, when summing up to infinity, is the exact formula for
A(%;n).

This claim, which is exactly Theorem 1.11, has been proved by the author in the previous two sections.

3|k</m

If we denote R3(n,x) as the tail sum as (1.36), then Bringmann’s result gives R3(n,/n) <. n¢, while the
author’s Theorem 1.12 improves the bound as Rg(n, ay/n) <q .. n~ 17+,
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Chapter 7

Partitions of rank modulo a prime
p=9

In this chapter we prove Theorem 1.14. We also prove (1.44) and (1.45) in the Remark to show that this
formula matches the result by Bringmann [17] in (1.41). Further more, we obtain an extra coincidence and

put it in the last section for future interests. Recall our notations in Section 2.4.

7.1 Vector-valued Maass-Poincaré series

We construct harmonic Maass forms via the so-called Maass-Poincaré series. For s € C, k € Z + %, and

z=uz+ iy € C with x,y € R, define
_k
M(y) = ly["* My gy, o1 (Jyl) and  @s(2) := M,(4my)e(x)

where M, g is the standard M-Whittaker function. One can check that ¢, 1 (2) is an eigenfunction of ﬁk
: : k2 —2k
with eigenvalue s(1 — s) + =%,
From now on we fix the prime p > 5 and focus on our (p — 1)-dimensional weight k& = % multiplier system
fp in Definition 2.11. For an integer m < 0, recall m_o, = m — o; defined in (2.35). Since we do not need the
weight f% case of fi, and only have p, in this section, we simply write m, instead of m . For mo, <0,

we define the Maass-Poincaré series at the cusp oo by

-1
2 X _1 Psk(Mocy?)
Poo(z§pa S, %7 m, ,Up) = ﬁ Z Z .up('}/) ! = d ;OO. py Cy. (71)
£=1 vl \I'o(p) (CZ + )2 Sln(?)
By [21, Lemma 3.1], this series is absolutely and uniformly convergent on any compact subset of Re s > 1.

The transformation formula for P (z;p, s, %, m, fp):
1
Poo(,ylz7pa S, %7 m,,up) = /’l’p(’yl)(cz + D)2POO(Zap7 S, %7mvlj‘p) for "= (é’ g) € FO(p)

can be proved similarly as (3.17).

For an integer r > 0, recall the definition of x, in (2.37), the stabilizer group I'y of the cusp 0 of T'y(p):
Top={£(L9):c e pZ} and the scaling matrix oy = (\/05 71éﬁ). Recall the notations X, and XT(,QO in
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(2.40). We denote Xﬁﬁz instead of Xﬁﬁo for simplicity. Recall the notations > r < and > a,r < in (2.38).

For every integer r > 0, we define the Maass-Poincaré series at the cusp 0 by

PO(Z;pa S, %7T7 /j/p)

0 _—1
2¢e(—Lypi P . 1 e 4
:=e(\%)p4 o> ) wileg ) ( ; 1)%
LE>T<~ETo\To (p) (—ay/pz — by/p)?

=(2%)

_c_ _d_
Note that oy Ly = (ﬂ\fﬁ 7;{\%). By [21, Lemma 3.1], the above series is absolutely and uniformly convergent
on any compact subset of Res > 1. The transformation formula for Po(z;p, s, %, T, fhp):

1
PO(’YIZH% S, %7T7 :up) = Mp(’Yl)(CZ + D)2P0(27pa S, %7T7 :up) for 71 = (é g) S Fo(p)

can be proved similarly as (3.31).

For convenience, we define the principal part of our vector-valued Maass-Poincaré series here. For a
vector-valued smooth function P(z) which satisfies P(7vz) = p,(7)(cz + d)2P(z) for v € T(p), if there exist
R (2) and Rg(z) such that Rg@(z), Rée)(z) €Clg Y for 1</ <p—1and

PO(2) = RO (2) = O(e™ ), (\/ﬁz)_%P“)(—p—lz) - R(()Z) (2) = 0(e~Y) for y — oo and some C > 0,

then we call Roo(z) and Rg(z) the principal parts of P(z) at the cusps co and 0 of I'g(p), respectively.

Moreover, if the Fourier expansion of P(z) can be written as
p—1 p—1
V4 n 4 n
P(z) = Z Z a&)(n)q <er+ Z Z a(_)(n)l“(%,47r|noc\y)q ey,
=1 n>M =1 n<0

for some M € Z, then the principal part of P(z) at the cusp oo is
R (2) = ag)(n)q"‘x’ eg. (7.3)

We take n < 0 because of ay, = i > 0. The principal part of P(z) at the cusp 0 is clearly the principal part
of (\/ﬁz)*%P(—p%) at the cusp co.

7.1.1 Fourier expansions of P, at oo

In this subsection, we compute the Fourier expansions of P (z;p, s, %, m, lp) at s = %. It is important to
note that we only have the absolute and uniform convergence for Re s > 1 by definition. However, the Fourier
expansion in the following theorem is guaranteed to be convergent by Proposition 3.14 when s = %. By
analytic continuation, P (z;p, s, %, m, lp) is convergent at s = % and has the Fourier expansion as below.
The proof of Proposition 3.14 is independent from this chapter.

There are similar arguments in [7, Proof of Theorem 3.1] for p = 2 and [14, Theorem 4.3] for p = 3.

Proposition 7.1. When ms < 0, the Maass-Poincaré series Poo(z;p, s, %,m,up) is convergent at s = %,

104



and we have the following Fourier expansion:

p—1
3 4mmely)\ g
Poo(zp, 2,5, m, pp) = Z( =

= VT sm(“ﬂ

47r|noo|y)
R o
Noo >0 Moo <0 \/,TT

where

AT | Moo Moo |2
B (n) Moo |1 22 S (m,n, ¢, i) h c
/oo } _ 27‘(6(—%) !1ooo Z Z 0000 s 10y vﬂp i (74)
BOO(n) e {=1 N|c>0 ¢ J1 <4ﬂ—|m00n002 > )
2 c

Here Soo)oo(m,n, ¢, fp) 1s defined by (2.44) and its scalar value can be written as

S(f o(m,m, ¢, pp) = e(—%) Z M —mis(dyc), (ma—i—nd) '

(&
w[al]
d (mod c)* Sln( [ )
ad=1 (mod c)

(7.5)

Cc

Proof. The following process is well-known and we provide details for readers to check. Recall the properties
of Whittaker functions from (2.18) to (2.22).

The contribution to Py (2;p, s, %, m, lp) from ¢ = 0 equals

5 7™
NG Z csc(%)cpsé (Mooz)ey.
=1

When s = %, by (2.20), such contribution is

p €.

(5,47 Mmoo
ZCSC % P31 mooz)ee = <1 — (7T|Tn|y> ZCSC L 2T Moo 2
Recall (Definition 2.11) that p, ((¢5))""

maps the value at the [af]-th entry to the ¢-th entry. Us-
ing the properties (1.9) for v, and Proposition 2.12 for u, and M,

», for Res > 0, the contribution to
P (z;p,s, %,m,up) from some ¢ > 0 equals

2 I
FZ%ZM ‘Zth‘z (cz +d+te) 2050(%)
1teZd
4Ty Moo Moo
Ms(|cz+d+tc|2>e< c _Re(c(cz—i—d—i—tc)))w
ﬁ2 SZiwu ((“b))€<7m°°a)26(ta )<z+d+t>é i
- 7la n\cd o0 -
€= do) Sm(%) ¢ ez ¢

c

4y Moo 1
M| ———)e|—Re| ——— ey.
(t5m) (e (i)
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Here we use Zd(c)* to abbreviate the following summation condition: for d (mod c¢)*, we choose a by
ad =1 (mod ¢) and b by ad — bc = 1.

g ()

teZ

Then f(z)e(asoz) has period 1 and f has Fourier expansion

ZGU e(neox) and f(z—i—ccl)

neZ

(7.7)

Il
7 N
3
SHE]
QU
N———
\
—
©
\._/

Here by [58, Proof of Theorem 1.9], we can compute

1 1
9 Mg | 2 AT | Moo |2
o |2 W s (nfnsoly) Jae | | nge < 0;
o (m) = SCRTCs) ) Tla—g) [neo | 700 ‘
Y - 1 2 2
4 o = 2 2 4 oo ltoo 2
| m y|4\/5 1—‘(7:(_1) ‘ Wi s_%(477nooy)128—1 <7r|mn2 , Noo > 0.
s+ 1) | ne , c

Thus, for Res > 1, we have the Fourier expansion of P, (z;p, s, %, m, fp):

2 21 w,1(2) 2T (25)e(—1)|moo |7
P Zp, s, ’m e °2 + 6271'“1002 8
(55225 5,1 tp) = fz in(2F) D V| Noo |2 |4y | 7

nez

2rW_1 o1 (dmineoly) §

1

1
oooo m n,c, ,U/p) 47T|m00n00|§ .
i Sy J( e <0

£=1 p|e>0
2rW1 o1 (dmnocy) . Sg@oo(m,n,c, Hp) AT | Moeoo| 2
; 5 by (ATmene®)
I(s+3) =1 o0 c c

For the right side of the expansion above, if we let s = %, by (2.21) we get

p—1 1 1
r(,47r|mooy)> eAmmoo? Moo |1
1- —2 e+ Yy R e (— )| —
/=1 ( \/7? ( e) T;Z ) noo
© 1
e 47T|noo\y Z Z Sédee (M, m, e, /Lp)J% (47T|moonoo|2>  ne <0;
£=1p|c>0 ¢
Z Z Sgooomncup)lé (47T|moonoo|é>’ Moo > 0.
£=1 p|lc>0 ‘

By Proposition 3.14, the above expression is convergent. Therefore, by analytic continuation, the series
P (z;p, s, %, m, lip) is convergent at s = % and has the Fourier expansion as above.
The last expression (7.5) is easily deduced by combining (2.44), Definition 2.11, and (1.18). O

7.1.2 Fourier expansion of P, at oo

In this subsection, we compute the Fourier expansions of Pg(z;p, s, %, T, fp) at 8 = %. Also note that the
convergence of the Fourier expansion in Proposition 7.2 is guaranteed by Proposition 3.14 when s = %. Hence

we have the convergence of Py(z;p, s, %, T, fp) at s = % by analytic continuation. Recall our notations > r <
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and > a,r < in (2.38) and a% in (2.36). Since we do not consider the weight —3 case of 7i, here, we write

Xr(g = XT(QO for simplicity.

Proposition 7.2. For an integer r > 0, the series Po(z;p, s, %, T, [p) 1S convergent at s = % and we have

I (L 4ninly
Po(z;p, 3, 4,7, 1p) = Z Bo(n)q"~ + Z Bg(n)(r"ﬁ)q"“x
Noo >0 Noo <0

where

(S

~

i lxﬁ,[s@“nm ‘

1
ok } s X[ s may) |\ 78)
= T 1 .
Bj(n) =1 asopta, | Pl a An Xﬁgmnm 3
[afle>r< J% o T

Here Sé@o(Xﬁ[aZ]),n,a,up) = S( ) (Xr x L) \N, ay fip)ee is defined in (2.49). If [al] €> r <, we have

Ooco

([al]) | ¢
. m, '*_noob d
Soo (XD m 0 ) = e(=3) 30 e d, [ae17p>ems<d,c>e< 0 b b ); (7.9)
b: b (mod a)* a ¢
ple, 0<c<pa
s.t. ad—bc=1

if [al] ¢> r <, we have S(()?o(Xﬁ[ae]), n,a, tp) = 0.

Remark. In the Fourier expansion, when £ is fixed, for the summation on a we only select a such that pta
and [af] €>> r <. It is also important to note that the denominator in the last exponential term in (7.9) is

—a, which is negative.

Proof. Recall the double coset decomposition (3.32) and the choice of v2 below it:

< d
o Towoe=J U roo(ﬁ ﬁ)PW

a?Ob (mod a)* _a\/]5 _b\/]5
pta

o5 (Lo \To(p)) = {og " (25)(§4): a>0, pta, b (mod a)*, t € Z}.

One can check that for ¢ > 0 and a > 0, we have

1
1 - - b 2 1 1 1
w05 oo (-avs oyt = (“EVE) e )t = —iph oz )
(674

In the double coset decomposition, we can take the representative (f{l \/?; :) with @ > 0 and ¢ > 0 because
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(éf)(f/aﬁ *) _ ((c—ﬁap)/ﬁ*

B iy *> for any 8 € Z. Then from (7.2), for Res > 1 we have

PO(Z;p757 %77‘7 /’[’;D)

1 (£)
< _ — 90‘; —(X O’YZ)
\/8— E E 1ip(007) lw%(%l,UoV)
leprg

(— a\fsz\f)%
: ( % )

—a\/p —b\/p

Y€l \og 'To(p)

¢
(2bttay)! 5,1 (X072) .
c d+tc T
tedra a?Ob a)* teZ (az +b+ta)>
pta

ple, 0 < ¢ < pa, and ad — be = 1.

Here and below we use ), a)~ to abbreviate the following summation condition: ¢ and d are determined by
Observe that vz

cz+d

s —p% — m, w(e,d + te,l,p) = p(c,d,?,p) for all £ and ¢, and
vy (¢ th‘;)) =y ((2Y)) e(tass) by (1.9). The contribution from a single a for p{a is then

l
268

X(ch
Z Z wle, d, 6, p)vp((¢5))e <T> Ze(taoo)
€E>T<]b(a)*

a
p teZ

1 47TX(3y (% 1
(242 4t) 2 M, Xr Re ¢
( a ) ( a2|z—|— +t|2 pa2 2+ g +t [de]

(1) _ x(at),,
)y 3 FET R (3 () T eftan)

ZGDa r<b(a

pa teZ
B s x (e, _ x(lat) )
(4 +t) 2 M, 7.0 e Y Re ey.
(ra+t) ‘(pa2|z+2+t|2 pa? PR

Here we have changed [df] to ¢, hence £ to [af] and £ €>r < to £ €> a,r <
As in the case of P, in Proposition 7.1, we let

([al]) ([af])
. e(tas) 47TXT,0 Y _Xr,o 1
()= ; (z+t)k Ms (pa2|z +t2 € pa? Re '

Then f(z)e(asox) has period 1 and f has Fourier expansion

Zay e(neox) and f <z + b)
a

nez

e (”jb> £(2). (7.10)
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Here by [58, Proof of Theorem 1.9], we have

e(—5)l(2s)
y(n) [a@ T
47X, 5 Y| " piva
1 1
([at]) |2 ([at]) 2
2 X, 47 | X,
T 1 .0 W,l S,l(47r|noo|y>=]2sfl i L ‘Moo ;Moo < 07
I(s—7)| noo ER a P
1 1
([at]) |2 ([a4]) 2
271— X7'O 47T XT'O
’ W 1 (4mnooy)los— — > * Moo , 0 > 0.
Mot )| o | a7 "
Thus, the Fourier expansion of Py(z;p, s, %, T, ftp) at the cusp oo for Res > 1 is:
2I'(2s)
Py(z; 399 9 Ta 27”71002'
o(Eip s Xt ;Z VAl o
1
20W_1 o1 (47|nee ©) 5 ([al]) x ([af]) 2
3 Ly (rneel) S (G o), (47 \Xeo T 1) L,
a>0:pta, I‘ 5 ‘X [al])‘ a a p
lalle>r< )
20Wi 1 (dmnsey) 8 (x o) 4 Xﬁ[af]) 2
o e s B Sup (T mast)y (NG, ) s
a>0:pta, T 1 ‘X([al])‘ *
[aé]Egrq (S+4) 0
For the right side of the expansion above, if we let s = %, by (2.21) we get
p—1
ZZQ,NeQﬂ'inooz
(=1 nezZ
1
F( 47r|noo|y) [al S(f) (X([af]) n,a ,UJp) An Xi[gﬂ) 2
Z N " o J% o Moo , Moo < 05
a>0:pta, Phoo p
lalle>r< . .
([ad]) |7 (¢ al ([a4]) 2
X7‘,O SE)O)O(XS ])anﬂahup)lé 41 XT,O - , Moo > 0.
a>0: pta, Pltoo a a p
[alle>r

By Proposition 3.14, where we take m = X,. < 0, the above expression is convergent. Therefore, by analytic

continuation, the series Po(z;p, s, %, T, ftp) is convergent at s = % and has the Fourier expansion as above.

The expression (7.9) is deduced by combining (2.48), (2.45), Definition 2.11, and (1.18). O
We combine the properties of the Maass-Poincaré series in the following proposition.

Proposition 7.3. Let P(z) denote either of P (2) := Pso(2; p, %, %,m,up) or Po(z2) :=Po(z;p, %, %,r, Hp)-
Then,

(1) For all v € To(p), P(v2) = pp(7)(cz + d)2P(2).
(2) For1<(<p—1, the {-th entry PY)(2) of P(2) is a harmonic Maass form in Hy (To(p?) NT1(p), 7).

(8) For1<{<p—1, PY(24z) is a harmonic Maass form in Hy (T1(576p%), vp).
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(4) The principal part of Poo(2;p, 2, %, m, pip) at the cusp oo of To(p) is

p—1

Moo e
Zq esc( % )er,

(=1
and at the cusp 0 of To(p) is 0.
5) For every integer r > 0, the principal part o plY 2ip, 3,1 w,) at the cusp oo of To(p) is 0, and at
0 47 2 P

the cusp 0 of T'o(p) is
®
e(=DpT > qFroe

Lexrd

Proof. First we prove (1) and (2). We have discussed the transformation laws of Pu(2;p, s, 3, m, p1,) and
Po(z;p, s, %, T, ftp) directly after their definitions. Since we have proved their convergence at s = %, by analytic
continuation, the transformation laws are kept. When we focus on each entry P()(z) and G (z) := P(¥)(24z),

the transformation laws

PO(vyz) = T(v)(cz + )2 PO (2), v € Lo(p*) NT1(p),
GO (yz) = ve(7)(cz + d)2GY(2), 7 € I1(576p°)

follow from Lemma 2.15.

Recall the definition for the principal parts before (7.3). For (3), since ¢, x(2) is an eigenfunction of
Ay, with eigenvalue s(1 — s) + kzz%, when k = J and s = 2, we have 3%90%%(2) = 0. Therefore, we have
A1P(z) = 0.

For (4), the principal part of P, at the cusp co can be read from Proposition 7.1. Note that

(a b)a _ (b\/ﬁ —a/\/;T))
¢ d)"° dyp —c/\/p

and d # 0 for v = (‘j Z) € Io(p). As in Proposition 7.2, we can conclude that the principal part of Py, at

the cusp 0 is 0.
For (5), the principal part of Py at the cusp oo is just 0 from Proposition 7.2. To compute its principal
part at 0, recall (7.2) for the definition and (6.7). The Fourier expansion of Py at the cusp 0 is given by

_1
(\/I)Z) 2P0(002;p7 %7 %an :U’p)

Then the contribution from ¢ = 0 equals

1 )
2¢(—§)p’ 1 ps 1(X;02)
(VP Y
T leprd (\/]32) 2
1 F(%747T\Xr(%|y) *©
=e(-3p* Y <1— ’ gXroey,
tedrg VT
and (5) follows. O
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7.2 Proof of Theorem 1.14

Fix a prime p > 5 and let 1 < ¢ < p — 1. Recall the definition of gl(ﬁ;z) in (2.30) and g2(§;z) in (2.31).

Also recall that the holomorphic part of Ql(ﬁ; z) has Fourier expansion

7T€ > f 1
csc | — Al —sn)q" 21, 7.11
()22 (oo )

Let the vector-valued function Gi(z;p) be defined as

p—1 /
Gi(z;p) = gz::lgl <p72> (78 (7.12)

By Proposition 2.10, G1(+; p) has the property

G1(v2p) = (1) (cz + d)2 Gy (z;p), fory=(28) € Ty(p). (7.13)

By (7.11) and (7.3), the principal part of G1(z;p) at the cusp oo of T'y(p) is

LA
cse () Zq_ieg. (7.14)
P/ =

By [18, (3.13)], the behavior of G; at the cusp 0 is given by

1 14 1 ¢ 1 14
pz)"2G (;a z) =(Vp2) %G (;—) =e(—3)p1G (;pZ>- 7.15
(\f)lpo (\[)lppz (s)2p (7.15)
By the discussion after (7.3), the principal part of G1(z;p) at the cusp 0 can be derived from the principal
parts of gg(é;pz) at the cuspoo for 1 </ <p-—1.
Recall that &5 is defined in (2.29) by

2q 3 (5) "+, Le(0,d),
14 2

a(52) = 4 ar e H-DA, L)

0, otherwise.
Here % is the only root of the quadratic equation f%xz + %x — 2—14 = 0 hence the order of 52(£; z) at oo is less

than 0 in the first two cases. By (2.31), the holomorphic part of gg(ﬁ; z) is
€2 (g;z) +2q 2 () Ay <€;Z> . (7.16)
p p

Recall (2.37) that z, is the only solution in (0, 3) of the quadratic equation

3, (1 1
_2 - —— =
2I+(2+r)x 24
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Now zg = ¢ and the contribution from 52(%; z) to the principal part of gg(ﬁ; z) at oo is:

2q*%(§)2+ﬁ7i when 0 < ﬁ < o,

_3(1_1 2+l(1_£)_L Y,
2q 2\ ) 2079728 when 1 — 29 < » < 1, (7.17)
0, otherwise.

For the principal part of Qz(ﬁ; z) at oo contributed from the part other than e2, we need the Fourier
expansion of M(ﬁ; z) defined in (2.26):

Lemma 7.4. Let p > 5 be a prime. When 1 < /¢ < %71, the first few terms of the Fourier erxpansion of
M(ﬁ;z) are
Z L%J TE 1
M (,z) = gr +0(q?).
p T=0
When % <Il<p—1,wehavel <p—L< % and the first few terms of the Fourier expansion of M(%; 2)

are

il

Iy <£7z> _ sl qT(lfﬁ) Lol
T=0

Nl

).

Proof. Tt suffices to prove the first case 1 < ¢ < 221 because M(ﬁ; z) =M(1 - %; z) by (2.28). We have:

o] £
P

14 i\ — -1 nqn+ 3n24+3n
M <,z> — H(]__qJ) 12()771#(]2 +3
p j=1 nez 1—q 77

3

(o)

n ntt 3p213n n+t

= (1+q+2¢° +0(¢") | D_(=1)"q"Frgzm T3m Y ")
n>0 T=0

n<0 T=1
= (14 0(q)) <<q S+ O(q)) + (1 +> g ) 4 0(q)>>
T=0 T=1
I‘%J ¢ 1
= > q7 +0(q?)
T=0

Proposition 7.5. Let p > 5 be a prime, let x, be defined in (2.37), which is the only solution in (0, %) of

the quadratic equation

3o, (1, 1,

2 2 24
and let R be the mazximal integer such that xl_%l < p. Then the sequence {x, : v > 0} is strictly decreasing and
the principal part of gg(ﬁ; z) contributed from the term involving M(ﬁ; z) (i.e. the part other than 62(£; z))
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equals

Qq*%(§)2+(%+’”)ﬁ*ﬁ when 0 < ﬁ <z,
D9 2 30D 0D A when1—w < £ <1 (7.18)
r=1 ; 8

0 otherwise.

Proof. By (7.16), we see that the term
re

-qr

55+

N

contributes to the principal part if and only if 0 < ﬁ < &, (otherwise the exponent will be positive). The

analogous case also holds for 1 — % and 1 — x,.

By Lemma 7.4, to ensure that the Fourier coefficient of q% in the Fourier expansion of M(f;; z)is 1, it

suffices to show that % < 3 for 0 < é < x,. Since z, € (0,1), we have

3o 1 1.3 1 2<3>< 1 1\ 1
TTr = -2, — =T+ — == |2, — % - ——— =~
277 27" 21 2 6 27 \2 6 6

Thus % < rz, < % < % The analogous case for 1 — ﬁ can be proved in a similar way. O

P

Combining (7.17) and (7.18), we get the principal part of Qg(ﬁg z) at the cusp oo:

2
R 2q_%(§) +(3+7)5 -3 when 0 < f; < xr,
2
E 2q7%(17£) +(3+r)(1-%)=%  when 1 — . < t<1 (7.19)
r=1 . P
0 otherwise,

where R is the maximal integer such that xl_%l <p.

Remark. Here we give a hint about the relation between r and the prime p. Since xy = %, when p < 5,
there is no principal part of Qg(ﬁ; z) at the cusp oo, hence no principal part of G; at the cusp 0. Since
1/x1 =34.9706- - -, for 7 < p < 31, we only have r = 0. Here is a table for first few conditions, where [a, b]
means the set of primes p for a < p <b.

Range of p | p=5 | [7,31] | [37,59] | [61,83] | [89,107] | [109, 131]
Allowedr | Nor | r=0| r<1 r<2 r<3 r<4

Recall Proposition 7.3 about the principal parts of the Maass-Poincaré series. To match the principal
part at the cusp oo, we take P (z;p, %, %,O,up) due to (7.14).
For the cusp 0, we recall the definition of X, in (2.40) and have

{—%—i—(%—f—r)é—%—‘, When()<£<a:r7
X = [_37(1 ~ L (A r)p(l- £ - %] . whenl-a, <%<1, (7.20)
0, otherwise and will never be used,

where [x] is the smallest integer > z. Moreover, recalling z, and a(()e) (denoted as a(f()) in (2.36) and (2.39)),

we see that
¢ al al
Xf,g = —pdep,1,rs Xr([ D= [=Pdeparl, Xv(',[o V= —Pde,p,a,rs

)

113



and XT(fO) match the order of the principal part of gg(ﬁ;pz) in (7.19). Combining Proposition 7.3, (7.14),
(7.15), and (7.19), we conclude the following proposition.

Proposition 7.6. With the choice of X, in (2.40), the principal parts of

Gl(zap) - POO(Z7pa %a %aouup) -2 Z PO(Z7p7 %7 %77‘7 /’(‘;D)
r>0
z ' <p

are zero for both cusps oo and 0 of To(p).
Now we start to prove Theorem 1.14.

Lemma 7.7. For X, defined in (2.40), the function

G(Z) = Gl(z;p)_Poo(z;p7%7%7oa;ufp)_2 Z P(](Z;pvgvévrvﬂp)
r>0
a:;1<p

is a holomorphic modular form of weight + on (To(p), pp), i.e. G(z) € My (To(p), pp)-

Proof. Recall Notation 2.5. By Lemma 2.15, (2.30), and Proposition 7.3, G()(z) is a harmonic Maass form
in Hy (To(p?) NT'1(p), 7y) whose Fourier exponents are supported on n — 5 for n € Z.

Since the principal part of G(z) is zero for both cusps oo and 0 of T'y(p), the principal part of G(¥)(z) for
every cusp of ['g(p?) NT'1(p) is zero. By Proposition 7.3, we know that

G (24z) € H1 (1 (576p?), vg)

1
2

with Fourier exponents supported on 241 — 1. We also have that the principal part of G(*) (24z) for every cusp
of 'y (p?) is still zero. By [21, Lemma 2.3], G(¥)(24z) is a holomorphic modular form in M, (D1 (576p%), 7).
Since G(z) follows the modular transformation law on (I'(p), 11,) and each entry G(¥)(2) is holomorphic,

we get the desired result. O

By Lemma 2.16, since G(Z)(24z) has Fourier coefficients only supported on 24n — 1 for n > 1, combining

the above lemma with Lemma 2.17 we have
Corollary 7.8. G(z) = 0.

Proof of Theorem 1.14. The theorem follows directly by combining Corollary 7.8, Proposition 7.1 and Propo-
sition 7.2. Note that the n-th Fourier coefficient of G¥)(2) is csc(%)A(ﬁ; n), hence we need to multiply the
Fourier expansion of the Maass-Poincaré series by sin(%) to get (1.43). O

The proof above shows that A(ﬁ; n) can be written in terms of the sums of Kloosterman sums (2.43) and
(2.48). In the following two subsections, we will prove the claim that Bringmann’s asymptotic formula (1.41),
when summing up to infinity, matches our exact formula (1.43). To be precise, we will show that the Fourier
expansion of the ¢-th component of P, matches the first sum in (1.41), and the Fourier expansion of the

¢-th component of Py matches the second sum on r in (1.41).
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7.2.1 Contribution from P

Recall that for a prime p > 5, a positive integer ¢ such that p|c, and 0 < d < ¢ such that (d,c) = 1, the
Dedekind sum s(d, ¢) is defined in (1.18). As c is always clear in this subsection, we denote d’ as d., for
simplicity, i.e. it is defined by dd’ = —1 (mod ¢) if ¢ is odd and dd’ = —1 (mod 2c¢) if ¢ is even. Also recall
the notation that a is given by 0 < a < ¢ with ad = 1 (mod ¢) and [af] is defined by 0 < [af] < p such that
[af] = af (mod p).

In this subsection we prove (1.44) in the Remark of Theorem 1.14. We conjugate (1.41) since its left side

is real and see the first sum is

6¢

1
C 2

2me(—3) Z e(—é)Bz,p,c(—mO)I (m/24n — 1>
— 1)1 ple<yvn
Then (1.37) gives
- sin(=£ i02cd!
Bipe(—n,0)= Y (—1)404“1.((#21,)) exp <—m’s(d, c) + W) e (nd) :
p

2
1n C
d (mod c¢)* S p

On the other hand, recall (7.5):

Sc(é)oo (m7 n,c, :up) = e(_%>
d (mod ¢)*
ad=1 (mod c¢)

c

To prove (1.44), it suffices to show that for all d (mod ¢)*, we have

(et (?mcd'z?) _ ile,d. [, p) 1)
sin(%) p? sin( 77[;@] )
We will show that both sides are equal to
(—1)te < 37rica€2>
——e — . 7.22
sin(”T‘fZ) P p? (7-22)

First we prove that the left side of (7.21) equals (7.22). When c is odd, we write ¢ = (2k + 1)p for some

integer k. Since dd’ = —1 (mod ¢), we can pick d’ = ¢ — a. Then

(—1)fett 3mil’ed —(—=1)* 3mil2c?  3milica
sin (T4 * P2 " sin(zke _ nla) P\ T T T2
P p p
—(=1)* 2 (2k41)? ( 37m'€20a>
—(—1)¢2k+1) Sin<ﬂ'£a) (=1 Xp 72

(-1)* . p< 3m‘£2ca>
= ———— X -_— 5

sin(’%“) p?

which equals (7.22). When c is even, we write ¢ = 2kp for some positive integer k. We pick 0 < a < 2kp for
ad =1 (mod 2kp) and 0 < d’ < 4kp for d'd = —1 (mod 4kp). Observe that (7.22) is the same if we change a

to a & 2kp, so we can pick a = 2¢ — d’ here and a similar process shows that the left side of (7.21) equals

115



(7.22) when c is even.
Next we prove that the right side of (7.21) equals (7.22). Define the integer ¢ > 0 by [af] = al — tp, k by
¢ =kp, and b by ad = 1 + be. By (2.34), we have

p(c, d, [al], p)
sm( lad )

- (W) (71)c<az tp>< Ld(aZ w)J/ “in < B t>

cal®  3micabel? ¢
— exp <— 377;? - 37”;; < 37m'cdt2> (et ot [y (”Z)

The above formula equals exp(— 3”;%‘4) / sm(”ge) times (—1) to the power of

abl’k? — cdt® + alk — tc + blk —td +t

= ablk + cdt + alk +tc+ blk +td +t
=(a+ 1)+ 1)k +Llk+ (c+1)(d+1)t
= (k = ¢ (mod 2).

The last step uses (z + 1)(y + 1) = 0 (mod 2) whenever (z,y) = 1.

Remark. From the proof above, for p|c and 0 < [af] = al — tp < p, we also have

(e, all p) = exp (—3”202“ )(—1)&“. (7.23)

This formula is helpful in Chapter 8.

7.2.2 Contribution from P,

In this subsection we prove (1.45) in the Remark of Theorem 1.14. Recall the definition of d;p . in (1.39),
of My pqr in (1.40), of a((f) in (2.36) and of X, in (2.40). In Bringmann’s asymptotic formula (1.41), the

second sum on r (after conjugation) becomes

47rsm( ) D (—m,m ) 4m 1\|?
Y 4 4p,a,r 4p,a,r
(n—1)t 2. X 3 L\ 7 Pewar (n B 24) '
24/ r>0 a>0: pfa, a- 5z \D,a,r
S0,pa,r>0

Recall (7.9):

Siee (XD 1,0, pryir) = e(=§) D pule,d, [af], p)e e

b: b (mod a)*
0<c<pa, plc
s.t. ad—bc=1

Xr(-,[ge]) 5+ nob L +d
a 24c |-

We denote b, as b’ for simplicity, i.e. b’ is defined by b’ = —1 (mod a) if @ is odd and by b’ = —1 (mod 2a)

if a is even. Moreover, we still denote positive integers ¢t by af — [af] = tp and k by ¢ = kp.
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We have ¢ =V (mod a) for (¢Y) € I'y(p). Hence we can rewrite Dy 4., as:

DZ,p,a,r(_nymé,p,a,r) = (_1)a€+[a€] Z Wh,q € (

b (mod a)*

; - a,r b
_ (_1)a€—[aé] Z | e—mis(ba) ( m&lh(; ctn ) )

b (mod a)*

My p,a,rb —nb
a

For v = (2%) € I'y(p), with our choice ¢ > 0 and a > 0, we need the relationship between e(—mis(b,a)) and
e~ ™5(de) Denote S = (1 o ) Recall wy in Definition 1.1. We have

1

az+b> (az+b)"2 =

cz+d

() = (x4 )

w1
2

because cz + b, ‘Zidb and az + b are in H for z € H. Therefore, we have v,,(Sv) = v,(S)v,(y). With the help

of 1,)(S) = e(—3) by (1.18), we get

677ris(b,a) _ 6(_%)€7wis(d,c)e(a+d + cfb).

Then we continue:

I
—
—_
~—
~
S
]
—~
|
o=
~—
&
8
o

—m a,rC+ nb a + d c—b
DZ;P;CE,T(_nv mf,p,a,r) e ( 4,p,a, + + )

a 24c 24a
b (mod a)*
1 1
_ t 1 — a+d (37 — Mepar)ct (n—57)b
= (=1)"e(—35) Z Wac € ( e ) e ( o .
b (mod a)*
Compare with the formula of SSQ(XT(WD, n, ¢, tp) where Xﬁ’[gé]) = —pds p.a,r, we are left to prove
1.1 N 6 L - a,r
(e d.Tall.p) o (‘) = (-1)'e (( o )C) : (7:24)

By (7.23), when 0 < [ d < &, recalling [af] = al — tp and ¢ = kp, we have

p(e,d,[al],p) e <(6£par — 214)6)

)lette 30&52 c(1+42r)(al —tp) = 3c(al — tp)?
+
2ap 2ap?
1)tk 3ca€2 (1+2r) ct(1+2r)  3cal? 3elt  3ct?
+ + i
2 2a 2p? D 2a

( (12 *))

On the other hand, by (1.40),

3

it = o (30t = [al)? 4 p(1 4 20)(at  [af)) = 2+ CE2E

2
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This gives (7.24). The proof when 2 < [%1 < 1 is similar: we have

e d D) ¢ ((5i,par—214)0>

3 62 (al — 3c(al — tp)? 0—t
1)fette ca c(al — tp) n c(a p) +( _T)E + cr(a p)
2ap 2ap? a ap
5k€ 5ct 3ct?
1)t+e o =Bkt S+ (1= 1)S -kt — i
2 2a a
(5—2r)
( (530 e1-r))
When 2 < % < 1, by (1.40) we also have
3 (5—2r)t
—My par = §t2 + ? +1-—r
Now we still get (7.24) and (1.45) follows.
Remark. From the proof we can rewrite
is - a,r b
S [~boepar] i) = (~1-lo 3 st <me0+n> (7.25)
a
b (mod a)*
where 0 < [af] = al — tp < p and
3,2 | 142r [af] 1
g — ?t + =5, when 0 < pe<67
” %t2+¥t+1—r, When%<[%<1.

This expression is helpful in the proof of Theorem 1.15 in Chapter 8 for the case p = 7.
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Chapter 8

Equidistribution of ranks modulo 5
and 7

In this chapter we prove Theorem 1.15, where Corollary 1.16 is a direct result once we have the exact formula
(Theorem 1.14). This proof is length and consists of checking many cases. However, the proof only uses basic
properties of congruences and Kronecker symbols. There are many tables recording data of arguments for

complex numbers among the proof.

8.1 Proof of Theorem 1.15, claim (1)

In this section we prove claim (1) of Theorem 1.15, which is for the case p = 5. In Proposition 7.1 we find

. 4
SO0+ degy) =e(-h) 3 HELERI v, (BT

. mlal]
d (mod ¢)* SlIl( 5 ) ¢
ad=1 (mod c)

We only consider £ = 1,2 because A(g;n) =A(l - %; n).

Denote ¢ by ¢ = 5¢’. For r (mod ¢)*, we define
V(r,c) :=={d (mod ¢)* : d=r (mod ¢)}.

For example, V(1,30) = {d (mod 30)* : d = 1,7,13,19 (mod 30)} and V(4,25) = {d (mod 25)* : d =
4,9,14,19,24 (mod 25)}. We will not restrict 0 < d < ¢ in V(r, ¢) because changing d to d + ¢ will not affect
the value of our Kloosterman sums. Clearly, |V (r,¢)| = 4 if 5||c and |V (r,¢)| = 5 if 25|c. Moreover, (Z/cZ)*

is the disjoint union

(Z)cZ)* = U V(r,c), where V(ri,c)NV(re,c) =10 ifry #re (mod ).

r (mod ¢’)*

From (7.21) and (7.22) where p = 5, we have




We claim that for ¢ = 1,2, the sum on V (r, ¢) satisfies

_3caf?

Spe = Z W@”S(d’c)e <4d) =0. (8.1)

deV (r,c) IH(T) ¢

If (8.1) is true, then

SO0 5n+ 4,ci1y) = e(=H) (1) D s () (<D =0

forall n € Z, £ = 1,2, and we have proved Theorem 1.15 in the case p = 5.

In the following subsections §7.1-§7.4, we prove (8.1) when 5||c. In §7.5, we prove (8.1) when 25|c. Suppose
now that 5||c. Since [V (r,c)| =4, let 8 € {1,2,3,4} such that 3¢’ =1 (mod 5) and we make a special choice
of V(r,c) as

V(r,c) = {dy,da,ds,ds} where d; = j (mod 5) and dj1 = dy + jBc. (8.2)

We also take a; such that a; = j (mod 5), aj4+1 = a1 + jB¢, and

ajd; =1 (mod ¢) because Jisy - =1 (mod 5). (8.3)

These choices do not affect the sum (8.1) because s, has period ¢ in both @ and d. In (8.1), we denote each

single summation term as

e _3cal?
P(d) = gm({;)) e (—120;(1?0» e (45) — Pu(d) - Py(d) - Py(d) (8.4)

where P;(d) := e(—?’ci’éez)/sin(’%‘z)7 P, := exp(—mis(d,c)), and P := e(4).

Remark. We keep 24c at the denominator of P(d) because the congruence properties of the Dedekind sum
are of the form 12¢s(d, ¢). See (8.8)-(8.11) for details.

We claim that the set of points P(d) for d € V (r, ¢) must have the relative position as one of the following

six configurations. Here 0 < d; < ¢ for simplicity but we use (8.2) in the proof.

o (=1:

/=1, points for V(2,55) /=1, points for V(7,90) /=1, points for V(15,95)
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/=2, points for V(2,65) /=2, points for V(9,55) /=2, points for V(3,35)

;=28

Here we explain the styles. Each graph above has two circles with inner one of radius csc(%”) and outer

one with radius csc(f). When £ = 1, the value of P(d;) and P(d4) will be on the outer circle (P(d2) and

P(d3) on the inner circle) because the term P;(d;) has denominator sin(m;ﬂ). When £ =2, P(dy) and P(d4)

will be on the inner circle.

We describe the relative argument differences via the following notations. Denote
Arg;(dy — dy;€), for j € {1,2,3}, u,v € {1,2,3,4}, and £ € {1,2} (8.5)

be the argument difference (as the proportion of 27, positive when going counter-clockwise) contributed
from P; going from d,, to d, when ¢ € {1,2}. To be precise, if we denote P;(d,) = R, exp(i©;,) for
Rj’u, @jﬂ € R, then

Argj(du —dyl)=a & 0;,—0;,=ca- 21+ 2kr for some k € Z.

We say two argument differences equal: Arg;(d, — dy;f) = Arg;(d, — dy;€) if their difference is an integer.
Although the P, and Ps terms are not affected by the value of ¢ in (8.4), we still use the notation
Arg,y(d, — dy;€) to indicate the different cases for £. Moreover, we define

3
Arg(d, — dy;¥) == ZArgj(du — dy; 0) (8.6)

j=1
as the argument difference in total.
The following condition makes the sum of four points P(d) for d € V(r,¢) on each graph to be zero:

Condition 8.1. We have the following siz styles for the relative position of these four points.

e (= 1. First graph style: the arguments (as a proportion of 2w ) going diy — do — d3 — d4y — d; are 13—0,
1—10, 1—3’0, and %, respectively. The second graph style is that all the argument differences are %, while the

third graph style has the reversed order of rotation compared with the first one.

Arg(du — dv; 1) \‘ d1 — dg — d3 — d4 — d1
¢ =1 (mod 5) 1% 1—10 13—0 %
¢ =2,3 (mod 5) 1 i i L
¢ =4 (mod 5) —130 —% _1% _1%
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e (= 2. Here are the styles for the fourth, fifth and sixth graphs.

Arg(d, = dy2) N\ | di — do — d3 — dy — 4y
¢ =3 (mod 5) —% _1% _% 1710

¢ =1,4 (mod 5) 0 i 0 i
¢ =2 (mod 5) % 1% % _1710

One can check that, whenever the four points on C satisfy any of the above cases of relative argument

differences and corresponding radii, the sum of them becomes 0. This can be explained by

1
where and are the radii.

sin(Z)  sin(%) ’ sin(%) sin(2F)

In other words, we prove (8.1) by showing that for 5||c and every r (mod ¢')*, the four terms in (8.1) has one
of the styles in Condition 8.1.

Before we divide into the cases, we first claim the following lemma;:

Lemma 8.2. For ¢ € {1,2}, we have
Arg(dy — do;f) + Arg(dy — ds; ) =0 and  Arg(dy — ds; €) + Arg(dg — da; ) = 0. (8.7)

Granted the above reduction, to prove that each case of the argument differences are one of the cases in

Condition 8.1, we only need to verify that
Arg(dy — dg;€) and  Arg(dy — do;l) for £ =1,2

satisfy Condition 8.1. We prove this by enumerating all the cases. We can list the argument differences for
Arg, and Args, but for Arg,, we require the following congruence properties of the Dedekind sum from [60,
(4.2)-(4.5)]. Here (d,c) = 1 and dy,; is the inverse of d (mod m) (see Notation 2.9):

20cs(d, c) € Z, where 0 = ged(c, 3), (8.8)
12¢s(d, ¢) = d + dgpe} (mod fc), (8.9)
12cs(d,c) = c+1—2(2) (mod 8), if ¢ is odd, (8.10)
12¢s(d,c) = d+ (2 + 3¢+ 1+ 2¢(5)) dygxory (mod 8 x 2%), if 2}||c for A > 1. (8.11)

These congruences determine 12¢s(d, ¢) (mod 24¢) uniquely in all the cases (2|c or 21 ¢, 3|c or 31 ¢), which is

the reason why we keep 24c in the denominator of Py(d).

Proof of Lemma 8.2. Note that
Arg(d, — dy; ) = Arg(dy — dw; £) + Arg(dy, — dy; 0)
for all u,v,w € {1,2,3,4}. Then it suffices to prove

Arg(d1 — dg;g) = Arg(d3 — d4;€).
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Recall our notation for d; and a; in (8.2). Since ag — a1 = a4 — az = 26¢’, one can show Arg,(d; — da;¢) =
Arg,(ds — d4; £) by

sgn (sin( L)/ sin(Z2L)) = sgn (sin(Z4L) /sin(22)) = 1.

It is also easy to show Args(d; — da;¢) = Args(ds — da; ). For Arg,, we apply (8.9), (8.10) and (8.11) with

the Chinese Remainder Theorem to show that

12¢s(dg, ¢) — 12¢s(dy, ¢) = 12¢s(dy, ¢) — 12¢s(ds, ¢) for all the corresponding congruences.
When ged(c, 3) = 1, we have

12¢s(dz, ¢) — 12¢s(dy,¢) = dg + a3 — dy — a1 = 33 (mod ¢),
12¢s(dy, c) — 12¢s(d3, c) = dy + ag — d3 — as = 33¢’ (mod c),
12¢s(da, ¢) — 12¢s(dq, ¢) = 12¢s(dy, ¢) — 12¢s(ds, ¢) = 0 (mod 6).

When 3|¢, we apply the congruence
@+ Y my — Tmy = —Y(@ +Y)(m} - T{my (mod m) (8.12)

to compute

da + dagsey — di — dygsey = B/ (1 — dagsey - disey) (mod 3c),
dy + dygsey — dz — dagsey = B/ (1 — dagaey - da(aey) (mod 3c),

which imply
12¢s(da, ¢) — 12¢s(dq, ¢) = 12¢s(dy, ¢) — 12¢s(d3,c) = 0 (mod ¢’).
by (8.9). After dividing by ¢’ (recall that the denominator of Ps(d) is 24¢), we have

60s(d2, c) — 60s(d1,c) = B(1 — dagze} - digsey) = B(1 — azar) (mod 15),
60s(dy,c) — 60s(ds,c) = B(1 — dagsey - d3gsey) = B(1 — agaz) (mod 15),

because of (8.3) and T(,,; = T{yny (mod n). Since a3 = a1 (mod 3) and a4 = ap (mod 3), we have
asa; = agas = 1 (mod 3). Moreover, aza; = agas = 3 (mod 5). Hence aga; = aqas = 13 (mod 15) and we
get

60s(da, ¢) — 60s(dy, c) = 60s(dy, ¢) — 60s(ds, c) = 38 (mod 15).

When c is odd, by (8.10) and d;, = d;, (mod ¢’), we have

12¢s(da, ¢) — 12¢s(dy, ) = 2(%) — 2(%) =2(1)(4) — 2(2)(%) = 4 (mod 8),
12cs(dy, ¢) — 12¢s(ds, ) = 2(%) — 2(%) = 2(2) (%) — 2(£)(%) = 4 (mod 8).
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When c is even and 2*||c for A > 1, by (8.11) we have

12¢s(da, ¢) — 12¢s(dq,¢) = da + (02 + 3¢+ 1)dogsxary + 2¢(5 ) dagsxary

A
- d] + (02 + 3¢+ 1)d1{8><2A} + QC(CTCl)dl{SXZA}

= (1 - daggx2ry d1{8><2>‘})
+20( £ )dagsxary — 2¢(£)di(sxory (mod 8 x 2%)

Hence above the difference is a multiple of ¢. Dividing ¢/ and by 22 = 1 (mod 8) for odd = we have
60s(d2, ¢) — 60s(d1,¢) = B(1 = (¢® + 3¢ + 1)dadr) + 2(5 )d2 — 2(5-)d1 (mod 8).
Similarly, we also have
60s(ds, ) — 60s(ds, ¢) = B(1 — (¢° 4 3¢ + 1)dads) + 2(5)ds — 2(5 )d3 (mod 8).
Dividing into cases for 4|c or 2|c with ¢ =2 or 6 (mod 8), one can conclude
dady = dsds (mod 8).

For the remaining part, we only need to determine (;-)d; = +1 (mod 4) for j € {1,2,3,4}. Since
J

d3 = d; (mod 4) and dy = d4 (mod 4), it is not hard to show that
(£)d2 — (5)di = (F)da — (£ )ds (mod 4).
Combining all the congruence equations in this proof, we have shown that
Arg,(dy — da; €) = Argy(ds — dyg; €) for £ € {1,2}

by proving
12¢s(dp, ¢) — 12¢s(d1,¢)  12cs(da, ) — 12¢s(ds, c)
24c 24c

in all the cases for ¢ (2|c or 2t ¢, 3|c or 31¢). The lemma follows.

ez

8.1.1 24{¢,31d,and 51

We first deal with the case for ¢/ = 1,7,11,13,17,19,23,29 (mod 30). Recall our notations
dy =dy + 38, dy=dy+ B, ay=a1+33c, a3 =ay+2Bc, B =1 (mod 5).

The argument differences Arg;(d1 — dy;¢) for j = 1,2,3 are given by the arguments of

) (e et (%)
) | |

sgn (sin(T94t)/ sin( 79t 24c 5
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respectively. First we have

(=1
38¢ = 8 (mod 10)

sgn (sin(”(?e)/sin(%lz)) = —1 whenever {

This is easy to prove because 36¢’ x 2 =6 (mod 10).
By (8.9), we have § =1 and

—12¢s(dy, ¢) + 12¢s(dy,¢) = —dy — ag + dy + a3 = —66¢ = —fc’ (mod c¢).

Moreover, we have —12¢s(dy, ¢) + 12¢s(dy, ¢) = 0 (mod 6) and

or ¢ = 2.

—12¢s(dy, ¢) + 12¢s(dy, ¢) = 2 ((df) —(

d;

))

52((

Here we have used (%) = 1 for j = 1,4 and d; = d; (mod ¢’) for all j. Then,

— 12¢s(dy, ¢) + 12¢s(dy,¢) =0 (mod 24).

(8.13)

(8.14)

(8.15)

Combining (8.14) and (8.15), since ¢’ is odd, we can divide 24¢’ on both the denominator and numerator in

P,. By 247! =4, we get

AI‘g2 (d1 — d4; 6)

Now we have Table 8.1. In the row of Arg,(d; — d4;1), we see +% because the sign difference

sgn (sin(T44)/sin(T4£)) = —1 when 38¢/

8 (mod 10). The Arg,(d; — d4;2) always need +% be-

cause 38¢ x 2 =6 (mod 10). The upper-half table is for the case £ = 1 and the lower-half table is for £ = 2.

& (mod 30) T [ 7 | 1 13 17 19 23 29
B 1 3 1 2 3 4 2 4
343¢ (mod 10) 3 | 3 | 3 3 8]
—98¢ (mod 10) 1| 7 |1 8 7 1 7 1
e N AR IR IR IR
et I A T T T T
¥Rt N I L I T T O O T A O
Total Arg(d; — dy;1) -2 3 | -3 i i 3 i 2
36¢ (mod 10) 3 | 3 | 3 8 3 8 8 8
_188¢2 =2¢ (mod5) | 2 | 4 | 2 1 4 3 1 3
e e T T I R e A
e N A
e S L
Total Arg(d; — da;2) 1 = 1 -+ + i -+ 1

Table 8.1: Table for Arg(dy — dy;f); 2t¢, 3¢, 51ec.

For Arg;(dy — dg; ), recall azdy =1 (mod c). The argument differences Arg;(d; — da;¢) for j =1,2,3
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are given by

e (—2Bc20%) 12¢s(dg, ¢) — 12¢s(dy, ¢) 43
sgn (sm(m?’é )/ sin( 7”glé)) ¢ (_ 24c > r© (5) ’
respectively. Since 25¢'¢ = 2¢ (mod 10), we always have
sgn (sin(722)/sin(T¢)) =1 and  sgn (sin(2%%)/sin(254)) = —1. (8.16)
Moreover, from (8.9) we have
12¢s(da, ¢) — 12¢s(dy,¢) = do + a3 — dy — a; = 33¢ (mod ¢), (8.17)
12¢s(da, ¢) — 12¢s(dy, ¢) = —2 (—(i—?) — (‘i—})) =4 (mod 8),
12¢s(ds, ¢) — 12¢s(dy, ¢) = 0 (mod 6), and
12¢s(dg, ¢) — 12¢s(dy, ¢) = 12 (mod 24). (8.18)

Combining (8.17) and (8.18), we divide by ¢’ and determine the unique value for
—(60s(dz,c) — 60s(dy,c)) congruent to — 38 (mod 5) and 12 (mod 24)

modulo 120. This gives the contribution of the argument difference from P». Now we can make Table 8.2.

¢ (mod 30) T [ 7 [11] 13 [ 17 ] 19 | 23 | 29
3 1] 3 |1 2| 3| 4] 2|4
—3¢ (mod 5) 2| 4 |21 | 4| 3| 1|3
. 2 4 2 1 4 3 1 3
Argy (di — dz;1) 5 5 | 5| 5 |5 | 5 | 5 |5
Argy(dy — da; 1) % | 1 |10 |0 | 16 | ~i6 | "1 | ~10
Argg(dy — dp;1) s s 5] 235 | % | s
Total Arg(d; — da;1) Sz 1&] 3 =3 3 |-2
-3¢ x 4 (mod 5) 3 1 3 4 1 2 4 2
.9} . 1 _ 12¢ 1 3 1 3 3 1 3 1
Argy(di —d22): 5 -5 | 15| ~10 | 10| 10 |10 | "10| 10 | "10
. 1 3 1 3 3 1 3 1
Argy(di — d2;2) | 10 | 10| 10| 10 | "10 | "10 | "10
Argg(dy — da; 2) s 305|235 5|5 | s
Total Arg(dy — dy;2) 0] 2 o | -2]2]0]|-2]0

Table 8.2: Table for Arg(dy — do;0); 2t¢, 3¢, 51c.

Combining Table 8.1 and Table 8.2, we see that Arg(d; — dy;£) and Arg(d; — do; ¢) for £ = 1,2 satisfy
the styles in Condition 8.1. This finishes the proof when 21 ¢/, 31 ¢ and 51 ¢'.

8.1.2 2¢t¢,3|d,and 51
These are the cases for ¢/ = 3,9,21,27 (mod 30). For Arg,(dy — dg4; ) we use (8.13):

=1
sgn (sin(T944)/sin(™44)) = —1  whenever { iﬁ , (mod 10) or { =2.
¢ =8 (mo
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For Arg,(dy — dg4; ), we need the congruence equality (8.12). By (8.9), we have
12¢s(dy, ¢) — 12¢s(dy, ¢) = dg + dagaey — di — digaey = 3¢/ (1 — dagzey - digzey) (mod 3c). (8.19)

By (8.10) we also have
12¢s(dy, ¢) — 12¢s(dy,¢) = 0 (mod 8). (8.20)

Dividing the numerator and denominator of P by 24c’, we observe that

— 5(s(da, ¢) — s(d1,¢)) = =85, B(1 — dygsey - digse) = B (mod 5) (8:21)

because dj(3.y = dj;53 = j (mod 5) for j = 1,4. Now we get Argy(dy — dy;€) = g Since Argg(dy — dy;0) =
%, we have Table 8.3.

¢ (mod 30) 3 9 o1 | 27

8 P 4 1| 3

36¢’ (mod 10) 8 8 3 3

—98¢? (mod 10) 8 4 1 7
Argy(di — dy3;1) —Z+ilE-IT 5 1-3
(Argy + Args)(dy — dy; 1): % 3 2 3 4
Total Arg(d; — dg;1) 1 3 -3 1
36¢ (mod 10) 8 8 3 3
—188¢? (mod 5) 1 3 2 4

Arg (di — d4;2) % Tlo —% %

(Argy + Argy)(d — dg;2): 2| 1 2 g |t
Total Arg(d; — dy;2) — 1 1 L

Table 8.3: Table for Arg(dy — da;€); 2t ¢, 3|c, 51c.

Next we investigate Arg(d; — da;¢). For Arg,(d; — da;{), we use (8.16):

sgn (sin(%’“)/sin(”gl)) =1 and sgn (sin(%%)/sin(%%)) =-1
By (8.9), we have
12¢s(da, ¢) — 12¢s(dy, ¢) = da + dogzey — di — digzey = B (1 — dagzey - difzey) (mod 3c). (8.22)
As 15|3¢, after dividing by ¢’ we have

GOS(dg,C) — 605(d1, C) = 5(1 — d2{15} . d1{15}) = 6(1 — agal) (mod 15) (823)

Since az = a; (mod 3), we have aza; = 1 (mod 3). We also have azga; = 3 (mod 5) by (8.3), then
aza; = 13 (mod 15) and
— (60s(da, ¢) — 60s(dy,c)) = —30 (mod 15). (8.24)

By (8.10) we have
12¢s(dy, ¢) — 12¢s(dy, ¢) = 4 (mod 8). (8.25)
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The congruences (8.24) and (8.25) determines a unique value modulo 120.

¢’ (mod 30) 3 9 |21 | 27
3 2 | 4 | 1| 3
-3¢ (mod 5) 1 3 2 4
Arg,(dy — da; 1) % % % %
Argy(dy — da; 1) —% —1—10 % %
Argy(dr — da; 1) s s |5 3
Total Arg(d; — ds;1) % —% % %
—12¢ (mod 5) 4 2 3 1
Arg, (dy — da;2) 13—0 —1—10 % —%
Arg,(dy — da; 2) —% —1—10 % %
Arg,(dy — da;2) % é % %
Total Arg(dy —dg;2) | -2 | 0 [0 | 2

Table 8.4: Table for Arg(d; — da;£); 21 ¢, 3¢, 51 c.
Combining Table 8.3 and Table 8.4 we finish the proof in the case 21 ¢/, 3|¢’ and 51 ¢.
8.1.3 2|d,3td,and 51
These are the case for ¢/ = 2,4, 8, 14,16, 22,26, 28 (mod 30). For Arg,(d; — d4;¢) we still use (8.13):

=1
sgn (sin(%“é)/sin(%le)) = —1 whenever { 36¢/ = 8 (mod 10) or { =2.

By (8.9), 6 = 1 and we still have
— (12¢s(dy, ¢) — 12¢s(dy, ¢)) = —(ds + ag — dy — a1) = —68¢ = =3¢ (mod c¢), (8.26)

and 12cs(d,c) = 0 (mod 6). Define the integer A > 1 by 2*|c. To determine the value modulo 24c, we need
to determine it modulo 8 x 2*. By (8.11) we have

1268(d4,6) — 1205(6[1, C) = d4 — d1 + (62 + 3c+ 1)(d4{8><2/\} — d1{8><2’\})

+2c (d4{8><2>‘}(d£4) - d1{8x2%}(£)) (mod 8 x 2%)

. ) (8.27)
= 368 (1 — (C + 3¢+ 1)d4{8><2k} . dl{gxgx})
+ 2¢ <d4{8><2)\}(£) — dl{gxgk}(i)) (mod 8 X 2>\)
We claim that
12¢s(dy, ¢) — 12¢s(dy, ¢) = 0 (mod 8 x 27). (8.28)
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To do this, since 2*|¢/, Z{zy = # (mod 8) for odd x, and ¢'|(12¢s(dy, ¢) — 12¢s(dy, c)) by (8.26), we divide ¢’
in (8.27) and obtain

60 (s(da, c) — s(d1,¢)) = 38 (1 — (2 + 3¢+ 1)dady) +2 (d4(d£4) - dﬂi))
= 38¢ (38dy — 1) (¢ — 1) + 2 (d4(£) - dl(d%)) (mod 8).

Define val.:= 38¢' (38d; — 1) (¢’ — 1) (mod 8). Note that both d; and ¢/ — 1 are odd. We have Table 8.5 for

val.:

¢ (mod 5) 1 2 3 4
3 1 3 2 4
38¢ 3¢ 6c’ 9¢/ 12¢
308d; — 1 (mod 2) 3dy —1|6d;—1|9dy—1] 12dy —1
2||le, dy =1 (mod 4); 4 4 0 0
2||e, d1 = 3 (mod 4); 0 4 4 0
4|c; 0 0 0 0

Table 8.5: Table of val.:= 38¢ (38d; — 1) (¢’ — 1) (mod 8); 2|c, no requirement for (¢, 3), 51 c.

For the second term we only need to determine dy(7) — di() (mod 4). When A is even, we have

d4 = dy (mod 4) and (%) = (%) = 1; when A\ > 3 is odd, we have dy = d; (mod 8) and (%) = (d%) =1. By

o () (42) - @) (442))

dy (%) ((_1)(d4—1)(§—1)/4 _ (_1)(111—1)(;?—1)/4) =0 (mod 4)

quadratic reciprocity,

da() —di(f)

% and % are of the same parity. This matches the last row (case 4/c)

where the last equality is because
in Table 8.5.

When 2||¢, recall dy = dy + 38¢’ and we have

d4(é) — dl(é) = (01/1/12) ((%)(_1)@4—1)(C?-l)/‘ld4 _ (%)(_1)(d1—1)(%—1)/4d1) (mod 4) (829)

[0

When ¢/ = 2 (mod 8), C//g_l is even and (8.29) gets to (= )dy — (dz—l)dl (mod 4); When ¢/ = 6 (mod 8),
/ dg—1 —1
C/# is odd and (8.29) gets to (d%)(—l) Tdy — (d—zl)(—l) 7~ d; (mod 4). Since ¢ = 5¢’ = ¢ (mod 8), we

can use dg = dj + 38¢ to determine dy (mod 8) and get Table 8.6.

oS

(8.29) \ | ¢ =2 (mod 8) | ¢ =6 (mod 8)
di(mod8) |1 3 5 7 |1 3 5 7
F=1,(8292 0 2 012 0 2 0
B=2(820]2 2 2 2|2 2 2 2
3=3,(820]0 2 0 2|0 2 0 2
B=4,(82910 0 0 00 0 0 o0

Table 8.6: Table for (8.29); 2|c, no requirement for (c,3), 51 c.

Comparing Table 8.5 and Table 8.6 proves (8.28). Recall (8.8) and (8.26), we divide both the denominator

and numerator in Py by 24¢’ and get Arg,(d; — dy;{) = e(g). Since Args(d; — dy;f) = e(%)7 we have
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Table 8.7.

¢ (mod 30) 2 4 8 14 16 22 26 28
B 3 4 2 4 1 3 1 2
38¢ (mod 10) s | s | s | s | 8| 8| s | s
—95¢% (mod 10) o | 4| 8| 4|6 | 2] 6| s
Argy (dy = dys 1) ~d6 |~ | 16 |~ | T | 1| 1 | 10
(Argy +Argg)(dr —dps1): % | 5 | 2 | 5 | B | 3 | 3 | 3 | 3
Total Arg(d; — dy;1) z 2 : 2 |1-%] 3 |- 3
—188¢? = 2¢' (mod 5) 4 3 1 3 2 4 2 1
T R I e e e R e
N E T N O I O A O O I
Total Arg(d; — dy;2) = o ] o 2 = o -+
Table 8.7: Table for Arg(d; — dy;2); 2|c, 31¢, 51c.
Next we deal with Arg(d; — da;£). For Arg,(d; — da; {), we still use (8.16):
sgn (sin(722)/sin(T¢)) =1 and  sgn (sin(22%)/sin(224)) = —1
By (8.9),
— (12¢s(dz, ¢) — 12¢s(dy, ¢)) = —(da + a3 — d1 — a1) = —38¢ = 26¢' (mod ¢). (8.30)

This congruence shows that 12cs(ds,c) — 12¢s(dy, ¢) is divisible by ¢/. Denote A by 2*||c. We claim that
— (12¢s(do, ¢) — 12¢s(dy,¢)) = 4 x 2> (mod 8 x 2*). (8.31)

To prove (8.31), we apply (8.11) to get

12¢s(da, ¢) — 12¢s(dy, ¢) = B’ (1 — (* + 3¢ + Ddagsx2ry - digsxary)

S o . (8.32)
+2¢ <d2{8><2’\}(d£2) - dl{8x2"}(i)) (mod 8 x 27).

Then similar as (8.27),
60s(dz, c) — 60s(dy,c) = B (Bdy — 1)(c' — 1) +2 (dg(d—i) - dl(i)) (mod 8). (8.33)

See Table 8.8 for the first part val.:.= 8¢’ (8dy — 1) (¢ — 1) and note that d; is odd and ¢ — 1 is odd:

¢ (mod 5) 1 2 3 4
154 1 3 2 4
Bc d 3¢ 2c 4c

Bdy — 1 di—113d1—1]|2dy—11|4d; —1
2||le, dy =1 (mod 4); val. (mod 8): 0 4 4 0
2||e, d = 3 (mod 4); val. (mod 8): 4 0 4 0
4|e; val. (mod 8): 0 0 0 0

Table 8.8: Table for val.:= 8¢’ (8d; — 1) (¢’ — 1) (mod 8); 2|¢, no requirement for (¢, 3), 51 c.
For the second part 2 (dg(é) - dl(i)) (mod 8), we do a similar process as Table 8.6 by quadratic
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reciprocity and skip this step. Combining (8.8), (8.30) and (8.31), we have

—(12¢s(dy, ¢) — 12¢5(dy, ¢)) = 12 x 2* (mod 24 x 2*).

By dividing ¢/, —60s(dz, ¢) + 60s(dy, ¢) (mod 120) is uniquely determined by 28 (mod 5) and 12 (mod 24).

Hence
1,7,3,9 .
Argy(dy — do;0) = TR for B =1,2,3,4, respectively
and we get Table 8.9.
& (mod 30) 2 [ 4 | 8 | 14 [16] 22 |26 28
153 3 4 2 4 1 3 1 2
28¢’ (mod 10) 2o 2 | 2| 2 |22 |2/ 2
—3Bc? = 2¢' (mod 5) 4 3 1 3 2 4 2 1
Arg,(dy — da; 1) % % % % % % % %
) : 3 1 3 3
Argy(dy — dy; 1) i |~ | "0 | % |10 | 10 | 10| 10
Arg(dy — da;1) s 2 s 5] 8 8|8
Total Arg(d; — do; 1) i -2 L3123 s
—128c¢? =3¢ (mod 5) | 1 2 4 2 3 1 3 4
Argi(di = d»2) | =3 | —% | 10 | —16 | 0 | —i6 | 10 | 10
) 3 1 3 1|1 3 1 3
Argy(di — d2;2) i | 10| "i0| 10 |10 | i |10 | "10
Arg(di — da; 2) s 2 s |5 3 5| 8
Total Arg(dy — dg;2) | 2 0 | -2] 0 |0 2 [0] -2

Table 8.9: Table for Arg(dy — do;¥); 2|c, 31 ¢, 51 c.

Comparing Table 8.7 and Table 8.9, we confirm that Condition 8.1 is satisfied in these cases.

8.1.4 2|c, 3|d,and 51

These are the cases ¢/ = 6,12,18,24 (mod 30). For Arg,(d; — dg4;¢) we use (8.13):

(=1
)/sm(“gle)) = —1 whenever or { =2.
36c¢ =8 (mod 10)

sgn (sin(T%

For Arg,(dy — dg;€), by (8.9) we have

— (12¢s(dy, ¢) — 12¢s(dy, ¢)) = =38¢/ (1 — dagzey - digzey) (mod 3c).

(8.34)

The proof of (8.28) in the former subsection still works for 3|c. Then —(12¢s(d4, c) —12¢s(dy, ¢)) is a multiple

of 24c’. After dividing both the denominator and numerator in P, and recalling d;{3.} = a; = j (mod 5) for

j=1,4, we get Argy(dy — dyg; ) = e(g). Now we have Table 8.10.
Then we check Arg(d; — da; ¢). For Arg,(dy — da; {), we use (8.16):

sgn (sin(722)/sin(")) =1 and  sgn (sm(zm?’)/8111(2”5“1 )) =—1.
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& (mod 30) 6 [ 12 ] 18|

3 1| 3| 2 | 4

38¢" (mod 10) 8 8 8 8

—98¢? (mod 10) 6 2 8 4
Argy(di — da; 1) 5|51 5 | -=

(Argy + Args)(dy — da; 1) : % g 3 i 2
Total Arg(d1 — d4; 1) —% % % TBO
—188¢? = 2¢’ (mod 5) 2 4 1 3
Arg,(dy — dy;2) _% % _1% 1710

(Arg, + Args)(dy — dg;2) - % 3 3 : 2
Total Arg(d; — dg;2) 2 Lol -&] 3

Table 8.10: Table for Arg(d; — dy;¥); 2|c, 3|c, 5t c.

For Arg,(dy — da;¢), by (8.9) we have
— (12¢s(da, ¢) — 12¢s(dy, ¢)) = =B (1 — dazeydigsey) (mod 3c). (8.35)
Since 3|c, dagzey = ag (mod 15) and di (3. = a1 (mod 15). After dividing by ¢’ we have
—(60s(dz2,¢) — 60s(dy,c)) = —B(1 — azai) (mod 15).
Combining a3 = a; + 28¢" and aza; = 3 (mod 5) we get aga; = 13 (mod 15) and
— (60s(dz, ¢) — 60s(dy, c)) = =38 (mod 15). (8.36)
Denote A by 2*||c, then (8.31) still works as
— (60s(dz, ¢) — 60s(d1,c¢)) =4 (mod 8). (8.37)

By(8.36) and (8.37),

1,7,3,9

Arg2<d1 — dg;g) = 10

for g =1,2,3,4, respectively.

This gives Table 8.11.
Comparing Table 8.10 and Table 8.11, we have proved that Condition 8.1 is satisfied in these cases.

8.1.5 5|

The case when 25|c and is different from the former cases. We still denote ¢’ = ¢/5 and V (r,¢) := {d (mod ¢)* :
d=r (mod ¢)} for r (mod ¢')*. Now |V(r,c)| =5 and since (d + ¢’,¢) = 1 when (d,c) = 1, we can write
Vir,e)={d,d+c,d+2c,d+3c,d+4c} for 1 <d < ¢ and d =r (mod ).

We claim that (8.1) is still true:

’ 22
¢ (_ 5 ) 12¢s(d, c) 4d
Y. ey e(—])=0, (8.38)
deV (r,c) SIH(T) ¢ ¢
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& (mod 30) 6] 12 | 18 | 24
8 1] 3 | 2 | 4
—3Bc? =2¢ (mod 5) | 2 4 1 3
Arg,(di — da; 1) 2] £ 1 g
Argy(di — da; 1) =1 3 |- -5
Args(di — da; 1) s | 2 3 :
Total Arg(dy — dg;1) | &5 | 3 i | -3
1287 =3¢ (mod5) | 3] 1 | 4 | 2
Ao di2) [ T[=Z 1 2 [=&
Argy(dy — da;2) R B R
Args(di — da;2) 2 2 3 :
Total Arg(di —d;2) | 0 | 2 | =2 | 0

Table 8.11: Table for Arg(dy — da; £); 2|c, 3|c, 51 c.

but this time we have five summands. We prove (8.38) by showing that there are only two cases for the sum:

/=1, points for V(9,125) /=2, points for V(11,100)

i.e. all at the outer circle (radius 1/sin(Z)) or all at the inner circle (radius 1/sin(2)) and equally distributed.
As before, we still denote Py, P> and P3 for each term in (8.38) and investigate the argument differences
contributed from each term. Note that P;(d) = (—1)°*/sin(Z2f) has period ¢/, hence Arg,(d — di;¢) =0
always.

For any d € V(r,c), we take a (mod ¢) such that ad = 1 (mod ¢). We denote d, = d + ¢’ and a, by
axdx =1 (mod c). Then can pick a, = a—c’ when d = 1,4 (mod 5) and pick a, = a+c when d = 2,3 (mod 5).

In the following two cases, we prove Arg(d — d,;1) is constant and independent from the choice of
d € V(r,c). The other case ¢ = 2 only affects P; (radii for those five points) and we still get (8.38).

8.1.5.1 cis odd

When d = 1,4 (mod 5) and 31 ¢, (8.8), (8.9) and (8.10) imply that
12¢s(dy, ¢) — 12¢s(d, ¢) = 0 (mod 24c), (8.39)

hence Arg,(d — d.;€) = 0 always. As Args(d — d.;¢) = £ for any d € V(r,c), we have proved (8.38) in this

case.
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When 3|c and d = 1,4 (mod 5), (8.9) implies
— (12¢s(dy, ¢) —12¢s(d, ¢)) = —c'(1 — dig3e} - dyzey) (mod 3c). (8.40)
Since 15]¢, after dividing by ¢ we have
— (60s(d, c) — 60s(d,c)) = a* — 1 (mod 15). (8.41)

Note that a = 1,4 (mod 5) and a? = 1 (mod 15), hence we have —(12¢s(d,,c) — 12¢s(d,c)) = 0 (mod 24c)
and the same conclusion as the former case.

When d = 2,3 (mod 5) and 31 ¢, recall d, =d+ ¢ and a; = a+ ¢ with a +d =0 (mod 5). By (8.8),
(8.9) and (8.10), we have

—(12¢s(ds, ¢) — 12¢s(d,c)) = —2¢ (mod ¢) and =0 (mod 24).

Then Arg,(d — d.;¢) = 2. Since Args(d — d.;¢) = 2, we have proved this case.

When d = 2,3 (mod 5) and 3|e, we still get (8.41), while this time a = 3,2 (mod 5), a®> — 1 = 3 (mod 15),
and hence a? — 1 = 48 (mod 120). We have Arg,(d — d,;{) = 2. Since Args(d — d,;¢) = 3, we have proved
this case.

8.1.5.2 ¢ is even

In this case, denote A by 2*|c. Then by (8.11) we have

12¢s(d., ) — 12cs(d,c) = ¢/ (1 — (¢® + 3¢+ D)dysx2ry - digxary)

+2¢ ((i)dl{&d)‘} - (%)d{8><2>\}) (mod 8 x 2%).

Since ¢/|(12¢s(dx, c) — 12¢s(d, ¢)) by (8.39) and (8.40), dividing the above congruence by ¢ we have
—60(s(ds,¢) — s(d, ) = —/(d —1)(¢ — 1) —2 ((i) L - (g)d) (mod 8). (8.42)

For the first term,
0 (mod 8) if 2|lc, d =1 (mod 4);
—d(d-1)(d =1)=< 4 (mod8) if2|c, d=3 (mod 4); (8.43)
0 (mod 8) if 4c.

When ) is even, (%) = (%) = 1; when A > 3 is odd, (di) = (2). In either case % and 41 have the same

parity. Hence when 4|c, we have

c

When 2||c, we have Table 8.12 for val.:= (-)d. — (3)d (mod 4) using quadratic reciprocity.
Combining (8.43) and Table 8.12, for 2*||c we get

12¢s(dy, ¢) — 12¢s(d,c) = 0 (mod 8 x 27). (8.44)

The argument for the cases d = 1,4 (mod 5) or d = 2,3 (mod 5), or the cases 3 1 ¢ or 3|c, are the same as the

former case ¢ odd and we hold the same conclusion.
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d (mod 8)
d, (mod 8) when ¢’ =2 (mod 8)
val.
d, (mod 8) when ¢ =6 (mod 8)
val.

O N O W
N =N O W
O WD 3| Ut
N O N ]

Table 8.12: Table for val.:.= (7-)d. — (§)d (mod 4); 2|c, no requirement for (3, ¢), 5|c.

This finishes the proof of claim (1) in Theorem 1.15.

8.2 Proof of Theorem 1.15, claim (2)

Recall Proposition 7.1:

S’g?oo(o, ™+ 5,¢u7) = e(—%)

. rmlal
d (mod c¢)* Sll’l( [7 ) ¢

where ad = 1 (mod ¢). We only need to consider ¢ = 1,2, 3 because A(%; n) = A(1 — £;n).

Let ¢ = 7¢. For r (mod ¢/)*, we still define
V(r,c) ={d (mod ¢)* : d=r (mod ¢)}.

For example, V(1,42) = {1,13,19,25,31,37} and V' (4,35) = {4,9,19,24,29, 34}. It is not hard to show that
[V(r,e)|=6if 71, |V (r,e)| =7 if 49|c, and (Z/cZ)* is the disjoint union

(Z)cZ)* = U V(r,c), where V(ry,c) NV (re,c) =0 for ry #ry (mod ).

r (mod ¢’)*

As in (7.23), we have

u(e,d, [al],7)  (—1)*¢ . (_37Tic’a€2>
sin(@) sin(Z72f) 7 ’

We claim that for £ = 1,2, 3, the sum on V(r,¢) for all r (mod ¢)* is zero:

e _3cal?
12¢s(d 5d
o) (), (30) et
deV(r,c) Sln(T) ¢ ¢

If this is true, then

. (mlal c c
deV(r,c) Sln( 7 )

#ed [0, T) riggae, <(7"+5)d) e (ﬂ) (—1)%.0=0

for all n € Z, £ =1,2,3 and we have proved claim (2) of Theorem 1.15.
We define each term in (8.45) as

P <><<>> (%) =Py i iy

sin(Z2t) 24c c
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First, we deal with the case 7 1 ¢/. We still denote as (8.5) for the argument differences, but in this case
u,v € {1,2,--- ,6} and ¢ € {1,2,3}, where

dy = ay = u (mod 7), aggydy =1 (mod ¢), duy1 = dy + ¢’ and a1 = a, + B¢ (8.46)

Note that the second congruence is not for a,d, but due to w7y -u =1 (mod 7). Let 1 < 3 < 6 such that
Bc =1 (mod 7).

As in Condition 8.1, we have the following styles for the six summands followed by the explanation in
Condition 8.3:

e /=1,2,3, first style.

/=1, points for V(1,14) /=2, points for V(4,35) /=3, points for V(3,28)

e /=1,2,3, reversed style from the above.

/=1, points for V(2,21) /=2, points for V(1,56) /=3, points for V(5,42)

Here we explain these styles. Each graph above includes three circles centered at the origin with radii csc(%)7
csc(Z) and csc(3F), respectively. The six points in each graph above mark P(d) for d € V/(r,c) on these
three circles. It is not hard to prove that whenever the six points satisfy the following condition on their

argument differences, they sum to zero. This proves (8.45). One hint is the equation

cos( & cos(Z cos(&& 1 1
(Z ) _ (27) + = (37 ) =0, where — — 3 are the radii.
sin(7)  sin(%F)  sin(3F) sin(7) " sin(F) " sin(F)
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Condition 8.3. We have the following six styles for these sixz points.

e (= 1: the arguments (as a proportion of 21) going di — do — d3 — dy — ds — dg — dy are —
1 2 _5 und3
70T 7 T 140

14’
2, respectively, or the reversed style.
dl — dg — d3 — d4 — d5 — d6 — dl
¢ =2,4 (mod 7) -2 ~2 -1 —2 -5 g
¢ =3,5 (mod 7) - z 1 2 & -$

e /=2, second graph style:

d1 — dg — d3 — d4

— d5 — d6 — d1
/ — 1 2 3 1
¢/ =5,6 (mod 7) 14 14 7 14 14 7
/ — 3 1 2 1 3 1

o ( =3, third graph style:

dl — d2 — d3 — d4 — d5 — d@ — dl
¢ =1,4 (mod 7) -3 2 3 = ~32 —2
¢ =3,6 (mod 7) 3 - -3 -2 3 2

Remark. Note that claim (2) of Theorem 1.15 is for the case ¢’f # £1 (mod 7), so Condition 8.3 does not

include all the cases of ¢ (mod 7). We will highlight these exceptional cases among the tables in this section
by a row “c’{ = £1 (mod 7)?”. The corresponding entry is:

blank, if ¢/ # +1 (mod 7);
“4+7 it =1 (mod 7);

“ 2

=7 ifdl=—-1 (mod 7).
We will explain these exceptional styles ¢’/ = +1 (mod 7) in the next section for claim (3).

In the following subsections, we show Arg(d; — da;0), Arg(da — d3z;¢), and Arg(ds — dg4;¢) in all the
cases ¢’ (mod 42). These argument differences are sufficient to check Condition 8.3 because

Arg(dy — do;€) = Arg(ds — dg; £) and Arg(de — ds;€) = Arg(dy — ds; 0)
where the proof is the same as the proof of Lemma 8.2.
8.2.1 21,31, 71

We begin by dealing with Arg(dy — da; £):

98c%0% | +0 sgn(sin("““z)/sin(mlz)) =1,
Argl (dl — d2;€) = - 14 1 . 7TL34€ . Tere
+35  sgn(sin(™%)/sin(*%)) = —1.

When ¢ = 1, the sign changes when 38¢’ = 10 (mod 14). When ¢ = 2, the sign always changes. When ¢ = 3,
the sign changes when 98¢’ = 9 (mod 14) but does not change when 98¢’ = 2 (mod 14).
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Since 12¢s(d, ¢) = 0 (mod 6), we have

—12¢s(dg, ¢) + 12¢s(dy, ¢) = —da — ay + dy + a; = —48c" (mod c¢),
—12¢s(da, ¢) + 12¢s(dy, ¢) = 2(%) (%) — 2(2)(F)

=0 (mod 8),
from which
24 -4
Argy(dy — da;l) = i 4P _0
7 7
(recall that Arg;(dy, — dy;¢) = x means Arg;(d, — dy;{)

— 1z € 7). Moreover, Argy(d; — do; () = 22

This gives Table 8.13. Note that there are 12 choices of ¢’ so we break the table into upper (for ¢
1,5,11,13,17,19 (mod 7)) and lower (for ¢’ = 23,25,29,31,37,41 (mod 7)) parts
Next we consider Arg(de — ds;¢), with deay = dsas =1 (mod 7)

if sgn(sin(™

20)/ sin(744)) = 1,
if sgn(sin(™% £/ sin(™ 7Z)) —1.

/2[2 0
Afgl(dQ — dg;g) = —SBC { +
Note that when ¢ = 1, the sign changes when 8¢’ = 8 (mod 14). When ¢ = 2, the sign remains the same. when

14 i%

@\1

¢ = 3, the sign changes when 38¢’ = 3 (mod 14) but remains when 10 (mod 14) because a4f =5 (mod 7)
Since 12¢s(d, ¢) = 0 (mod 6), we have

—12cs(d3, ¢) + 12cs(dg, ¢) = —ds — a5 + da + ag = —2¢" (mod c)
—12¢s(ds, ¢) + 12¢s(dg, ) = 2(73)(—3) — 2(72)(d—2) =4 (mod 8),
and —84s(ds, ¢) + 84s(dz, ¢) (mod 168) is uniquely determined by 12 (mod 24) and —25 (mod 7). S

1,3,5,9,11,13
Arg,(dy — ds;0) = T when 8 =1,3,5,2,4,6, resp.

Moreover, Argy(dy — ds; £) = 22. This gives Table 8.14, which is broken into upper (for ¢ = 1,5,11,13,17,19 (mod 7))
and lower (for ¢ = 23,25,29,31,37,41 (mod 7)) parts
Then we investigate Arg(ds — dyg;¢) with dzas = dgas =1 (mod 7). First we have
93c"%¢? if sgn(sin(™%
AI‘gl (d3 — dy; () 41

14 if sgn(sin(™%

26)/ sin(792))

2 )/sm( &

When ¢ = 1, the sign changes if 36¢' = 10 (mod 14). When £ = 2, the sign always changes. When ¢ = 3, the
sign changes if 98¢’ =

(\
—
=

I
|
—

(mod 14) but remains if 98¢’ =9 (mod 14).
We have 12¢s(d, ¢) = 0 (mod 6)

—12¢s(dy, ¢) + 12¢s(ds, ¢) = 28¢ (mod c)

and

—12¢s(dy, ¢) 4 12¢s(ds, ¢) = 2(4
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& (mod 42) 11 5 11 13 [ 17
3 1| 3 2 6 5
36¢ (mod 14) 3 3 10 10 3
—98¢ (mod 14) 5 | 11 6 2 1
Argy(di — d2;1) 5 g g+l 5+3 ] 5
(Argy + Argy)(dy — do; 1) | —3 | -2 -2 3 2
Total Arg(d; — do;1) 2 2 -3 3 2
¢ =+1 (mod 7)? +
—18B¢? = 3¢’ (mod 7) 3 1 5 4 2
Argy(di = do;2): 5+ % | =34 | -5 2 L -2
(Argy + Argz)(di — d2;2) | —7 | —3 —2 7 2
Total Arg(d; — da;2) -2 2 -4 2 .,
d¢==1 (mod 7)7 + —
98¢ (mod 14) 9 1 9 2 ) 9 1 9
~818¢ (mod 14) 3 | 1 12 1 9 | 1
Argy (di — da;3) -z 1 -3 —+ Z : | -3
(A A s | 4 | 2| -2 | 1|2 |
Total Arg(d; — da;3) -3 z -3 3 3 1
¢ ==+1 (mod 7)7 + +
& (mod 42) 23 | 25 | 29 31 | 37 | 41
3 4 | 2 1 5 4| 6
38¢ (mod 14) 10| 10| 3 3 10 | 10
—98¢2 (mod 14) 10 | 6 5 1 10 | 2
Arg(di — d2;1) = | -& 2 = =
(Argy + Argy)(di — do; 1) 3 -2 -1 2 3
Total Arg(d; — da; 1) -2 | -4 2 2 -~
¢ =41 (mod 7)? +
—18B¢c™ = 3¢’ (mod 7) 6 5 3 2 8 4
Argy(di = d2s2) 5+ | f | 45 | 11 | “i1 | T | 1
(Argy + Argy)(dy — dg;1) | 3 | -2 -1 2 3 i
Total Arg(d; — da;2) -2 -5 =& L -3 &
d¢==1 (mod 7)? + -
98¢ (mod 14) 3 | 2 9 9 2 | 2
~818¢ (mod 14) 6 | 12 3 9 6 | 4
Arg, (di — d2;3) % —% —% % % %
(Argy + Argy)(di — d2;1) | 3 —2 —% 2 2 7
Total Arg(d; — da;3) 7% 7% 7% % % %
d¢==+1 (mod 7)? - -

Table 8.13: Table for Arg(d; — do;¥) in (8.45); 2t¢, 31¢, T1ec.
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& (mod 42) 1 ] 5 11 13 [ 17 | 19
3 1| 3 2 6 5 | 3
¢’ (mod 14) 1|1 8 8 1|1
—38¢”% (mod 14) 11 | 13 2 10 5 | 13
Arg, (dy — d3; 1) o | & | ats | 4ts| o | &
(Argy + Argz)(do — d3;1) | 1} o 7 71 7 o
Total Arg(ds — ds;1) -3 2 -2 3 2 2
d¢==+1 (mod 7)? + -
—63c? = ¢ (mod 7) 1 5 4 6 3 5
Arg, (dy — d3;2) : & : 2 1 § 2 3
(Arg, + Argg)(da — d3;2) | 15 | & v o | o
Total Arg(ds — ds;2) L4 -2 L 2 L
d¢==1 (mod 7)? + -
36¢ (mod 14) 3 | 3 10 10 3 | 3
—278c? (mod 14) 1 5 4 6 3 5
P e e B R
(Argy + Argg)(de — d3;3) | 13 o i i T o
Total Arg(ds — ds;3) 2 2 2 - |
dl==+1 (mod 7)? + +
¢ (mod 42) 23 | 2 | 29 31 | 37 | 41
3 4 | 2 1 5 4 | 6
B¢ (mod 14) 8 8 1 1 8 8
—38c? (mod 14) 8 2 11 5 8 10
Argl(dg — dg; 1) ﬁ 7% % 1571 ﬁ 1371
(Arg, + Args)(do — d3;1) | 2 | & i 3 22
Total Arg(d; — do; 1) -2 | -2 -3 2 —2 3
¢ =+1 (mod 7)? + —
—63c? = ¢’ (mod 7) 2 4 1 3 2 6
P L A R R R I A R
(Argy + Args)(do — d3;2) | 13 7 7 " o o
Total Arg(dy — d2;2) L -Z - 2 -4
¢ =+£1 (mod 7)? + -
35¢ (mod 14) 10 | 10 3 3 10 | 10
—27B¢? (mod 14) 2 4 1 3 2 6
(P o R - B S B S A
(Argy + Argz)(do — d3;3) | 17 7 i i 7 i
Total Arg(d; — do;3) -2 & 2 -2 2 =&

d¢==1 (mod 7)?

Table 8.14: Table for Arg(ds — ds;¥) in (8.45); 2t¢, 31¢, T1ec.
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So —84s(dy, c) + 84s(ds, ¢) (mod 168) is uniquely determined by 12 (mod 24) and 28 (mod 7) and

1 11,1
Arg,(ds — dy; ) = W when 8 =6,4,2,5,3,1, resp.

Moreover, Args(ds — dg;¢) = % This gives Table 8.15.
Now we have finished the proof for 2t ¢/, 31 ¢ and 7 1 ¢ by comparing Table 8.13, Table 8.14, and
Table 8.15 with Condition 8.3.

8.2.2 21c,3|d,71(¢

In this case ¢/ = 3,9,15,27,33,39 (mod 42). First we check Arg(dy; — do;{) with dia; = daag =1 (mod 7):

98¢202 [ 40 sgn(sin(™%t)/sin(T2E)) =1,
Argl (dl — d27€) = - 14 1 . 7ra746 . Trglf _
+35  sgn(sin(7%<)/sin(7%=)) = —1.

When ¢ = 1, the sign changes when 38¢’ = 10 (mod 14). When ¢ = 2, the sign always changes. When ¢ = 3,
the sign changes when 98¢’ = 9 (mod 14) but keeps when 95¢ = 2 (mod 14).
We have 0 = 3, 6¢s(d, ¢) € Z, and

—12¢s(da, ¢) + 12¢s(dy, ¢) = —da — dagaey + di + digsey = =8¢ + B digaey - dagsey (mod 3c).

Here dy 3¢} is the inverse of di (mod 3c) and we have used (8.12). Hence we confirm that —12cs(da, c) +
12¢s(dy, ¢) is a multiple of ¢/. After dividing the above congruence by ¢/, we obtain a congruence modulo 21

while d;(3.4 = e (mod 21) due to 21|c. Hence
—84s(dg, ¢) + 84s(dy,¢) = =B + Pajas = B(araq — 1) (mod 21).
We have ajaq = 4 (mod 21) by aga; =1 (mod 3) and ajay =4 (mod 7). Hence
—28s(da, ¢) 4+ 28s(d1,¢) = 8 (mod 7).
Due to (2) = 1, we also have

—12¢s(dy, ¢) + 12¢s(dg, ) = 2(%)(%}) — 2(%2)(%?) =0 (mod 8).

Since 3¢’ is odd, we still have —28s(da, ¢)+28s(d1, ¢) = 0 (mod 8). Now we get Arg,(dy — da;{) = M
and (Arg, + Args)(di — do; 0) = %’8 This gives Table 8.16.
Next we investigate Arg(de — d3;¢) with dyas = dsas = 1 (mod 7):

@

38¢202 [ 40 sgn(sin(™ef)/sin(T4l)) =1,
Argl(d2 — d37€) = - 14 1 ( : (wgrf)/ : (WZ4€))
+35  sgn(sin(™%%)/sin(*%)) = —1.

When ¢ = 1, the sign changes when 8¢’ = 8 (mod 14). When ¢ = 2, the sign remains. When ¢ = 3, the sign
changes when 38¢ = 3 (mod 14) but remains when 38¢ = 10 (mod 14).

141



 (mod 42) T [ 5 ] 11 3 ] 17 | 19
3 1| 3 2 6 5 | 3
38¢" (mod 14) 3 3 10 10 3 3
98¢”? (mod 14) 9 | 3 8 12 | 13| 3
Arg, (dz — dy; 1) | 4 |uTs|uts| 11 | u
(Argy + Argy)(ds — dy; 1) | o i 1 1 i1
Total Arg(ds — dy; 1) 2 i -1 -2 l L
d¢==+1 (mod 7)? + -
183c? = 4¢’ (mod 7) 4 6 2 3 5 6
Arg (ds — dyg;2) 1 2+ % | &4 2 -2 - 2 2
(Argy + Argy)(ds — dy;2) | o T i Ty i
Total Arg(ds — dy;2) -2 2 -2 2 3 2
d¢==1 (mod 7)? + -
98¢ (mod 14) 9 9 2 2 9
818¢”% (mod 14) 11 | 13 2 10 5
Arg, (d5 — dy33) ool m | | 1 | T
(Argy + Args)(ds — du;3) | 13 7 v o i
Total Arg(ds — d4;3) % —% % —% —%
dl==+1 (mod 7)? +
¢ (mod 42) 23 25 29 31 37
8 4 | 2 1 5 4
36¢’ (mod 14) 10 10 3 3 10
98c¢? (mod 14) 4 8 9 13 4
Argl(d3%d4;1) 7% ﬁ 715*4 7% —11
(Argy +Argg)(ds — dusl) | 17 | T | 1 | T
Total Arg(ds — dy;1) -3 | - 2 i -3
¢ =+1 (mod 7)? +
183c? = 4¢/ (mod 7) 1 2 4 5 1
Arg (ds —dg2) 14 +3 | -3 | - | & L -5
(Argy +Args)(ds — dus2) | 44 | 11 1 11 i
Total Arg(ds — dy;2) -2 -2 -2 3 —2
¢ =+£1 (mod 7)? + -
98¢ (mod 14) 2 | 2 9 9 2 | 2
—818¢? (mod 14) 8 | 2 11 5 8 | 10
Arg,(d3 — d4;3) o | = = = 14 <
(Argy + Argz)(ds — d;3) | 1 i 7 71 v o
Total Arg(ds — d4;3) i 3 3 -2 3 3
d¢==1 (mod 7)? - -

Table 8.15: Table for Arg(ds — d4;¥) in (8.45); 2t¢, 31¢, T1ec.

142




¢ (mod 42) 31 9 [ 15 27 | 33 | 39
B ) 4 1 6 3 2
38¢ (mod 14) 3 | 10] 3 |10/ 3|10
—98¢”% (mod 14) 1 | 10] 5 | 2| 11] 6
Arg, (di — da; 1) | i1 | 1| Tu| T | M
(Argy + Argdh — dos1) | 3 | 4| b 8| 1| 2

Total Arg(d; — da; 1) -2l & -2 & |-&

d¢==1 (mod 7)? + -

—188¢? = 3¢’ (mod 7) 2 6 3 4 1 5
Argi(di = dps2): 3 +3 | -2 | & | -4 | & |[-& | &
(Argy + Avgdh — dos1) | 3 | 4| b | 8| 1| -2

Total Arg(d; — da;2) Sl -Z - & -4

d¢==1 (mod 7)? - +

96¢" (mod 14) 9 2 9 2 9 2

—818¢? (mod 14) 9 6 3 4 1 12

e N R A

(Argy +Argg)(di —dz1) | =2 | =7 | =3 | % | -3 | -3

Total Arg(d; — dg;3) 3 -3 | -2 3 : -2
¢ =+1 (mod 7)? — +

Table 8.16: Table for Arg(d; — do;¥¢) in (8.45); 21 ¢, 3|c, Tt c.
We have 0 = 3, 6¢s(d, ¢) € Z, and

—12¢s(ds, ¢) + 12¢s(dz, ¢) = —d3 — dagzey + d2 + dagzey = =8¢ + B doysey - dspsey (mod 3c).

Hence we confirm that —12¢s(ds,c) + 12¢s(ds, c) is a multiple of ¢/. After dividing by ¢/, we obtain a
congruence modulo 21 and

—84s(ds, ¢) + 84s(da, c) = —f + Basas = Bagas — 1) (mod 21).
Since agas = 13 (mod 21) by aqas =1 (mod 3) and asas = —1 (mod 7), we have
—28s(d3, ¢) + 28s(da, c) = 43 (mod 7).

By (8.11), we get

—12¢s(ds, ¢) + 12¢s(da, ¢) = Z(d—;)(di) - 2(%3)(”[—,) =4 (mod 8).

c!

Since 3¢’ is odd, we still have —28s(ds, ¢) +28s(dz, ¢) = 4 (mod 8). Now 45 (mod 7) and 4 (mod 8) determines
a unique residue modulo 56 and then

1,3,5,9,11,13
Argy(dy — ds;0) = % (mod 1) when S =1,3,5,2,4,6.

This gives Table 8.17.
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& (mod 42) 3 ] 9 [ 15 | 27 |33 39
8 5 4 1 6 | 3| 2
B¢’ (mod 14) 1 8 1 8 1 8
—3Bc? (mod 14) 5 8 11 10 13 2
Al"gl(dQ — dg; ].) T54 1714 % 1371 % —1571
(Argy + Argg)(de — d3;1) | 13 % 7 T | a1
Total Arg(ds — ds;1) 2 -2 | -2 3 2 —2
d¢==1 (mod 7)? + -
—63c? = ¢’ (mod 7) 3 2 1 6 5 4
Argl(dg — dg; 2) : % % % % g % %
(Arg, + Argy)(do — d3;1) | 12 2 o 2 = &
Total Arg(ds — ds;2) S-S5l 5| &l-=
dl=+1 (mod 7)7 - +
36¢ (mod 14) 3 ] 10] 3 | 10 3| 10
—273c% (mod 14) 3 2 1 6 5 4
e A A R
(Argy + Args)(do — d3;1) | 13 i i 7 | T T
Total Arg(ds — ds;3) -2 -2 & -3 2
¢ ==+1 (mod 7)? — +

Table 8.17: Table for Arg(d; — do;¥¢) in (8.45); 21 ¢, 3|c, Tt c.

Finally we deal with Arg(ds — dg;¢) where dsas = dqas =1 (mod 7):

98¢202 | +0 sgn(sin(™22)/sin(Tl)) =1,
Argl(d3 - d4’£) = 514 1 ( : (71'(:2[)/ : (ﬂt;75l))
+35  sgn(sin(™%)/sin(*%7)) = —1.

When ¢ = 1, the sign changes when 38¢’ = 10 (mod 14) but remains when 38¢’ = 3 (mod 14). When
¢ = 2, the sign always changes. When ¢ = 3, the sign changes when 98¢ = 2 (mod 14) but remains when
96¢ =9 (mod 14).

We have 0 = 3, 6¢s(d, ¢) € Z, and

—12¢s(dy, ¢) + 12¢s(ds, ¢) = —dy — dagzey + d3 + dzgzey = =8¢ + B d3sey - dagse (mod 3c).

We again confirm that —12¢s(dy, ¢) + 12¢s(ds, ¢) is a multiple of ¢’. After dividing the above congruence by
¢/, we obtain a congruence modulo 21 and

—84s(dy, ) + 84s(ds, c) = —f + Basas = Blasaz — 1) (mod 21).
Since asas = 10 (mod 21) byasas =1 (mod 3) and asaz = 3 (mod 7), we get
—285s(dy, ¢) + 28s(ds, ¢) = 38 (mod 7).

We also have

—12¢s(dy, ¢) + 12¢s(ds, ¢) = 2(d74)(d—4) - 2(%)(‘%) =4 (mod 8).

c!
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Since 3¢’ is odd, we get —28s(dy, ¢) + 28s(d3, ¢) =4 (mod 8). Now 38 (mod 7) and 4 (mod 8) determines a

unique residue modulo 56 and then

1 11,1
Arg,(dy — d3;0) = W (mod 1) when S =6,4,2,5,3,1.

This gives Table 8.18 and we have finished the proof for ¢ = 3,9, 15,27,33,39 (mod 42).

& (mod 42) 31 9 |15 27 | 33 | 39
B 5 4 1 6 3 2
36¢ (mod 14) 3103103/ 10
98¢2 (mod 14) 13 4 9123/ 8
Arg,(ds — d4; 1) S22 313 &
(Argy +Args)(ds —dg1l) | 2 | &4 | 2| & | B | &
Total Arg(d; — dao; 1) il -1l 2 |-21]-1
¢ =41 (mod 7)? + -
188c”? = 4¢’ (mod 7) 5 1 4 3 6 2
L9) . 1 | 4c 3 5 1 1 5 3
Argl(d3—>d4,2).§+7c 14 — 1 14 — 1 14 — 1
(Argy+Args)(ds —dasl) | 75 | 17 | 11 | 11 | T1 | T
Total Arg(ds — dg;2) 31 -2 -2 2 2| -2
¢ =41 (mod 7)? - +
9B¢ (mod 14) 9 2 9] 2 ]9 2
8183c¢? (mod 14) 5 8 11 | 10 | 13 | 2
Arg, (dy — d2;3) | M | 1| tf | 11| i
(Argy +Argg)(ds —dy;1) | 2 | & | 2| & | B | &
Total Arg(d; — dg;3) -3 3 3| -2 | -3 3
¢ =+1 (mod 7)? — +

Table 8.18: Table for Arg(ds — dy;¥¢) in (8.45); 21 ¢, 3lc, Tt c.

8.2.3 2|d,31,71(¢

In this case ¢/ = 2,4, 8,10, 16, 20, 22, 26, 32, 34, 38,40 (mod 42). First we deal with Arg(d; — da;¥):

98¢22 [ 40 sgn(sin(Tut)/sin(Tut)) =1,
Argy(dy — dg; 0) = — i 0 ( : (m:z)/ - (m:z))
14 +5  sgn(sin(™%5)/sin(T%5)) = —1.

Now ¢’ is even, so ¢’ =8 (mod 14). When £ = 1,2, the sign changes. When ¢ = 3, the sign remains.
For Arg, we need to combine (8.9) and (8.11). We have 12¢s(d, ¢) = 0 (mod 6) and

— 12¢s(da, ¢) + 12¢s(dy,¢) = —dy — ag + dy + a1 = —48¢" (mod c¢). (8.47)

Then —12¢s(dz, ¢) + 12¢s(dy, ¢) is a multiple of ¢'.
We claim that
— 12¢s(da, €) 4+ 12¢s(dy, ¢) = 0 (mod 8 x 27). (8.48)
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Denote A > 1 by 2*||c. We have

—12¢s(da, ¢) + 12¢s(dy, ¢) = — dg — m(@ +3c+1+2c(f))
+dy + dygswary (¢ + 3+ 1+ 2¢(F))
= — B¢ + Bc/dagsxary - digsxary (© +3c+1)
+ 2¢(dygx2ry () — dagsx2ry(45)) (mod 8 x 2%).

After dividing ¢/, we get the value modulo 8 by T(zy = 2 (mod 8):

—84s(dy, ¢) + 84s(d1, ¢) = = + Bdadi (¢ + 3¢+ 1) + 6(di (F5) — da(F))
=B (14 diB)(c +1) = 2(di () — da(+£)) (mod 8)

For the first value val.:= 8¢'(1 4+ d18)(¢' + 1) (mod 8), we see that 5(1 4 d13) is even (becuase dy is odd)
and ¢’ is even, hence the result is 0,4 (mod 8). Moreover, val. is the same for ¢/ and ¢’ + 7. Then we have
Table 8.19.

¢ (mod 7) 1 2 3 4 5 6
3 1 4 5 2 3 6
Bc c 4c' 5¢ 2 3¢ 6¢’

Bdy +1 di+1]|4d;i+1 | 5di1+1|2d1+1|3di+1] 6d;+1
2||le, d1 =1 (mod 4) 4 0 4 4 0 4
2||e, dy = 3 (mod 4) 0 0 0 4 4 4
4le 0 0 0 0 0 0

Table 8.19: Table for val.:= 8¢’ (Bdy + 1) (¢ + 1) (mod 8); 2|e, no requirement for (¢, 3), 71 c.
For the other part we determine whether
di(F) —da(;) =0 or 2 (mod 4). (8.49)

When 2*||c and A > 2 is even, we have d; = dy (mod 4) and (%) =1, hence (8.49) is 0 (mod 4). When A > 3
is odd, then ds = d; (mod 8) and we still have (%) = (%) Then when 4|c, we get (8.49) always divisible by
4, which matches the last row of Table 8.19.

When 2|¢, by (I) = (£)(—1)"7 for odd =, we have

’
dp—1 G -1

d1<di>—d2<dz>:<;%>((—1>“2”+“2‘“321<;>d1—<—1>”2”* = <di>d2) (mod 4). (8.50)

Since do = d; + B¢, we divide into cases for ¢/ = 2,6 (mod 8), d; = 1,3,5,7 (mod 8) and g from 1 to 6 to
make Table 8.20. Note that dy (mod 8) is derived by ¢ (mod 8), § and d; (mod 8).

Comparing Table 8.19 and Table 8.20, we have proved (8.48). Combining (8.47) and 12¢s(d, ¢) = 0 (mod 6),
we divide 24¢’ to compute Argy(dy — do;f) = g Then (Arg, + Args)(dy — da;0) = —g and we have
Table 8.21.

Next we deal with Arg(dy — ds;{) with deas = dzas = 1 (mod 7):

38202 | +0 sgn(sin(T%f)/sin(™ut)) =1,
Argy (dy — d; ) = =2 : ( : (mu)/ | (ﬂ;e))
+35  sgn(sin(™%%)/sin(7%)) = —1.
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(849) N\, | ¢ =2 (mod 8) | ¢ =6 (mod 8)
di(mod8) |1 3 5 7|1 3 5 7
F=1,349 |2 0 2 02 0 2 0
B=4,(849 10 0 0 00 0 0 0
B=5(849) 2 0 2 0|2 0 2 o0
B=2(849) 2 2 2 2|2 2 2 2
B=3,(849) [0 2 0 2|0 2 0 2
B=6,(849) 2 2 2 2|2 2 2 2

Table 8.20: Table for (8.49); 2|c, no requirement for (¢, 3), 71 c.

Now ¢ is even, so ¢’ =8 (mod 14). When ¢ = 1, the sign changes. When ¢ = 2,3, the sign remains.
For Arg,(ds — ds;¢) we do the similar proof as Arg,(d; — do; £). First we have

—12¢s(d3, ¢) + 12¢s(da, ¢) = —d3 — a5 + d2 + ag = —26¢" (mod c¢). (8.51)

Then —12¢s(ds, ¢) + 12¢s(da, ¢) is a multiple of ¢'.
We claim that
— 12¢s(ds, ¢) + 12¢s(dz, ¢) = 4 x 2* (mod 8 x 2*). (8.52)

For A > 1 such that 2*||¢, we have

—12¢s(ds, ¢) + 12cs(da, ¢) = — d3 — dg(gxory (¢ +3c+ 1+ 2¢( 1))
+da + dygswary (¢ + 3c+ 1+ 2¢(F))
= — B + B dy(sxary - dagsxary (¢® + 3¢+ 1)
+ 2¢(da(sx2ry (55) — dagsxary(45)) (mod 8 x 2%),

After dividing ¢/, since 2*||¢’ and T{zy = « (mod 8) for odd z, we have

—84s(d3, ¢) + 84s(da, ¢) = = + Bdzda(c® + 3¢ + 1) + 6(da(F5) — da(£))
= B/ (1+d2B) (" +1) — 2(d2(7) — ds(f;)) (mod 8)

The proof of (8.52) is then the same as the proof of (8.48) before, noting that in the second part we have
(d—;) = 1 while (%3) = —1. This difference makes an alternation in Table 8.20 where we should change all 2 to
0 and all 0 to 2, which results in 4 x 2* (mod 8 x 2*) rather than 0 (mod 8 x 2*) in (8.52). We omit the
details.

Combining (8.51), (8.52) and 12¢s(d, ¢) = 0 (mod 6) we can determine Arg,(de — ds; £) with denominator
42 and numerator by 38 (mod 7) and 3 (mod 6), hence

1,3,5,9,11,13
Arg,(de — d3;0) = % when 8 =1,3,5,2,4,6, resp.

Now we have Table 8.22.

Finally we check Arg(dy — ds;¢) with dsas = dsaz =1 (mod 7):

2

s

98¢202 | +0 sgn(sin(22f)/sin(Tl)) = 1,
Arg, (dy — d3; () = 14 (sin( Qz)/ . (m;e))
)/ sin( ) =—1.

+1  sgn(sin(™%

147



¢ (mod 42) 2 [ 4 ] 8 | 10 | 16 | 20
3 4 [ 2| 1|5 | 4| s
—38¢2 (mod 14) 106 | 12] 8 | 10| 2
0/2 5
Ao d) 3 -0 | & |k | & | & | & | &
(Argy +Argg)(di —dz1) | =7 | =2 | =3 | =3 | =7 | =%
Total Arg(d; — do; 1) -2 -2 & e
¢ =+1 (mod 7)? + -
—18Bc? = 3¢’ (mod 7) 6 5 3 2 6 4
o). 1 3c 5 3 I 3 5 i
Argi(dv = d2):5+% | 3 | 11 | "w | 1| u | 1
(Arg+ Ay )(dh = dt) | <3 | <2 | <b | <3 | = | =8
Total Arg(dy — do;2) -2 -L1-2 &4 |-&1 &
d¢==1 (mod 7)? + -
—8153¢” (mod 14) 6 | 12 | 10| 2 | 6 | 4
72
Aoy | 3] ¢ 3] 5] 2] 3
(Argy + Ay )y 1) | 4 | <3 | 1| 3 | 4| g
Total Arg(d; — da;3) -1 | -2 -2 3 -1 3
d¢==1 (mod 7)? - -
 (mod 42) 22 | 26 | 32 | 34 | 38 | 40
3 1| 3| 216 | 5 | 3
—983¢? (mod 14) 12 4 6 2 8 4
C/2
Argy(dy — dp;1) : 5 = 9B14 T |- | cu|-n| 1|
(Argy + Argy)(dy — do;1) | =3 | =2 | =3 | =8 | =3 | -2
Total Arg(d; — do; 1) 3 2l =2 - & =
¢ =41 (mod 7)? + -
—18B¢? = 3¢’ (mod 7) 3 1 5 4 2 1
.9 - 3c 1 3 3
Argy(dv = d;2):5+% | -5 |~ | 4 | 4 | a4 | u
(Argy + Argy)(dy —do;1) | =3 | =2 | =3 | =8 | =3 | -2
Total Arg(dy — do;2) 2121 -4 & L 2
¢ =41 (mod 7)? + -
—818c? (mod 14) 10 8 12 4 2 8
c/2 5
Argy (di — d2;3) —81{34 7 % g % % %
(Argy + Argg)(di — da; 1) i | -2 -2 -2 -2
Total Arg(d; — dg;3) 3 i 3 3 3 z
d¢==1 (mod 7)? + +

Table 8.21: Table for Arg(d; — do; ) in (8.45); 2|c, 31 ¢, Ttc.
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¢ (mod 42) 2 [ 4 ] 8 | 10 | 16 | 20
3 4 [ 2| 1|5 | 4| s
—38¢”% (mod 14) 8 | 2 | 4 | 12| 8 | 10
1) . L _ 387 1 5 5 1 3
Arg(dr—dsD):g—%8- | 4 |-G |-t | 1 | 4 | u
(Argy+Argg)(do = dsil) | 33 | 17 | 11 | 11 | u | b
Total Arg(ds — ds; 1) -2 | -2 | -2 2 -2 3
¢ =+1 (mod 7)? + -
—63c? = ¢ (mod 7) 2 4 1 3 2 6
Avg(d o dyi2) %2 | 2 | £ | L2 [ 22 |¢
(Argy + Args)(d2 — d3;2) % i 7 7 7 i
Total Arg(ds — ds;2) —ﬁ —% —ﬁ 15—4 —1—14 1—14
d¢==1 (mod 7)? + -
—273¢” (mod 14) 2 | 4 | 8 |10 2 | 6
72
TP I B O B B B
(Arg, + Args)(d2 — d3;3) i i 7 T 7 i
Total Arg(ds — d3;3) -2 & 2l =-&|-& -3
d¢==1 (mod 7)? - -
 (mod 42) 22 | 26 | 32 | 34 | 38 | 40
3 1| 3| 216 | 5 | 3
—36¢? (mod 14) 4 6 2 10 | 12 6
C/2
Argy(dz — d3;1) : 5 = 3B14 —i | 14 | 1 T |~
(Argy +Argg)(d2 —dsil) | 17 | &5 | 11 | 14 | & | T
Total Arg(ds — ds;1) -2 2 -2 3 2 2
¢ =41 (mod 7)? + -
—63c? = ¢ (mod 7) 1 5 4 6 3 5
Arg, (dy — d3;2) : 3 I 1T s [ &1 ¢ ] 23] 8
(Argy +Argg)(d2 —d5i2) | 17 | 71 | 11 | 4 | & | T
Total Arg(ds — d3;2) fﬁ ﬁ f% ﬁ % ﬁ
¢ =41 (mod 7)? + -
—273c? (mod 14) 8 12 4 6 10 [ 12
72 < 5
Ao ® T | 4§ 3 3] 3
(Argy+Argg)(do = d3i3) | 4 | % | 11 | 1 | 1 | T
Total Arg(ds — ds;3) % 13—4 % % 71—‘1 1—34
d¢==1 (mod 7)? + +

Table 8.22: Table for Arg(ds — ds;¥¢) in (8.45); 2|c, 31 ¢, Ttc.
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Since ¢’ is even, we have —38¢' = 4 (mod 14) and the sign always changes.

For Arg,(ds — da;f) we argue as for Arg,(de — ds; ¢) and Argy(dy — da;¢). First we have
—12¢s(dyg, ¢) + 12¢s(ds, ¢) = —dy — az + d3 + a5 = 28¢" (mod c). (8.53)
Then —12¢s(dy4, ¢) + 12¢s(ds, ¢) is a multiple of ¢/. We claim that
— 12¢5(dy, ¢) 4 12¢s(ds, ¢) = 4 x 2* (mod 8 x 27). (8.54)
The proof is the same as the proof for (8.52) and we omit the details. Combining (8.53), (8.54) and (8.8), we

can determine Arg,(ds — d4; ¢) with denominator 42 and numerator by 48 (mod 7) and 3 (mod 6), hence

1 11,1
Argy(de — ds; 0) = W when § =6,4,2,5,3,1.

This gives Table 8.23.

Comparing Tables 8.21, 8.22 and 8.23 we see that when 2|¢/, 31 ¢ and 71 ¢/, Condition 8.3 holds and we
have proved (8.45).
8.2.4 2|c,3|d, 71

In this case ¢/ = 6,12,18,24,30,36 (mod 42). First we deal with Arg(dy; — da;{):

98c202 [ +0 sgn(sin(T%t)/sin(Tut)) =1,
Argl(dl — d27€) = - 14 1 ( . (71';4E>/ : (Tra71f))
+35  sgn(sin(7%=)/sin(7%=)) = —1.

Now ¢’ is even, so ¢’ =8 (mod 14). When ¢ = 1,2, the sign changes. When ¢ = 3, the sign remains.
For Arg, we need to combine (8.8) and (8.11). We have 12¢s(d, ¢) = 0 (mod 2) and

— 12¢s(da, ¢) 4+ 12¢s(dy, ¢) = —da — dagacy + d1 + di(sey = =B + B dagaey - digsey (mod 3c). (8.55)

Then —12cs(da, ¢) 4 12¢s(dy, ¢) is a multiple of ¢’. After dividing ¢/, since 3|¢’ and djf3.} = e (mod 21),
we get
— 84s(da, ¢) + 84s(dy, ¢) = —f + fasa; = 36 (mod 21). (8.56)

where the last congruence equality follows since aga; =4 (mod 7) and aga; =1 (mod 3).
We still have (8.48):
—12¢s(da, ¢) 4+ 12¢s(dy, ¢) = 0 (mod 8 x 27)

because the proof of (8.48) does not depend on whether 3|c or not. Combining the above two congruences we

have Arg,(dy — da; {) = g Then (Arg, + Args)(dy — da; ¢) = —g, which gives Table 8.24.

Next we check Arg(ds — ds;¢) with daay = dsas = 1 (mod 7):

36202 [ 40 sgn(sin(T%t)/sin(T%t)) = 1,
Argl(d2 — d3’€) — —T L ( ] (Tr;rz)/ - (ﬂ_(;il[))
+35  sgn(sin(7%7)/sin(*%7)) = —1.

Now ¢’ is even, so 8¢’ =8 (mod 14). When ¢ = 1, the sign changes. When ¢ = 2, 3, the sign remains.
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¢ (mod 42) 2 i [ 8 |10 | 16 | 20
3 4 | 2 1|5 | 4] 6
98¢% (mod 14) 40 8 | 2|6 | 4|12
1) . L 987 3 1 5 1 3 5
Argl(d3%d4,1) : §+ 514 ~ 14 14 ~14 14 14 14
(Mgt Arg)(ds s dst) | & | 2| & | & | & | &
Total Arg(ds — ds; 1) -1 -1 2 z -3 | -2
¢ =+1 (mod 7)? + -
183c = 4¢/ (mod 7) 1 2 4 5 1 3
o). 1 dc 5 3 1 3 5 1
Argl(d3%d4,2).§+7 ~14 ~ 14 14 14 14 14
(Argy + Args)(ds — da; 1) 7 I 7 7 i ¥
Total Arg(ds — ds;2) -2 | -3 -2 3 ~2 2
d¢==1 (mod 7)? + -
8152 (mod 14) 8 | 2 | 4 | 12| 8 | 10
.9y . 1 8187 1 5 3 5 1 3
Arg(ds > du3) 5+ | 11 | ~u |1 | u | u | 1
(Arg, + Argy)(ds — dg; 1) L 4 2 2 & =
Total Arg(ds — da;3) i 3 3 -3 i -3
d¢==1 (mod 7)? - -
 (mod 42) 22 | 26 | 32 | 34 | 38 | 40
8 1 | 3| 2] 6| 5 | 3
98¢ (mod 14) 2 10 8 12 6 10
C/2
Argy(ds — dg;1) 1 5 + 9B14 % | T 7 T |- | i
(Arg, +Argg)(ds »dsl) | % | 13 | % | u | u | 1
Total Arg(ds — dg;1) 2 i -1 | -2 i i
¢ =41 (mod 7)? + -
183c? = 4¢’ (mod 7) 4 6 2 3 5 6
. 9) - 4c’ 3 3
Arg)(ds > dus2):5+% | 4 | f1 | Ti| 1| 11 | u
(Arg, +Argg)(ds > dus2) | 3 | 13 | u | u | u | 1
Total Arg(ds — d3;2) -2 2 -3 2 3 2
¢ =41 (mod 7)? + -
815¢7 (mod 14) 16 ] 2 [10] 121 6
.9y . 1, 8187 3 5 3 5 1
Argy(de = d3i3): g+ | =3 | ~11 | ~%1 | 1 | 11 | u
(Argy+Argg)(ds »dsl) | &4 | % | & | & | u | 1
Total Arg(ds — ds;3) 3 -1 3 -3 | -2 3
d¢==1 (mod 7)? + +

Table 8.23: Table for Arg(ds — dy;¥) in (8.45); 2|c, 31 ¢, Ttc.
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¢ (mod 42) 6 | 12 | 18 | 24 | 30 | 36
B 6 3 2 ) 4 1
—98¢"? (mod 14) 2 4 6 8 10 12
c/2 B B
Arg(di — d2;1) % - 9€4 —% —1% —i i ﬁ 1—54
(Argy + Arg)(dy > ) | -2 | <3 | 2| -3 | |
Total Arg(d; — do; 1) -2 2 2 & 2] &
d¢==1 (mod 7)? - +
—18Bc"* = 3¢’ (mod 7) 4 1 5 2 6 3
Arg(dy — d;2) : § + 3¢ -1 & |-3| & |-&
(Argy +Args)(di —d2;2) | =2 | =2 | =2 | =2 | =% | —%
Total Arg(d; — dg;2) 2 Sl-& & |-2| -2
d¢==1 (mod 7)? + —
—R13¢7 (mod 14) 1] 8 |12 21 610
c/2 5
M+ @ ®) - | § | 4|4 1§ | ]
(Argy +Argg)(di —d2) | =% | =2 | =% | =3 | =3 | —3
Total Arg(d; — da;3) 3 i -3 3 -1 -2
¢ =+1 (mod 7)? + —

Table 8.24: Table for Arg(d; — do;¥¢) in (8.45); 2|c, 3|c, 71 c.

For Arg,(ds — ds;¢) we have

— 12¢s(ds, ¢) + 12¢s(da, ¢) = —d3 — dsqacy + da + dagacy = =B + B/ daey - dagaey (mod c). (8.57)
Then —12¢s(ds, ¢) + 12¢s(ds, ¢) is a multiple of ¢/. After dividing by ¢ we get
— 84s(d3, c) + 84s(ds, c) = —f8 + Basas = 128 (mod 21) (8.58)

where the last congruence is by asas = 20 (mod 7) and asas = 1 (mod 3).
The equality (8.52) still holds:

—12¢s(ds, ¢) + 12¢s(da, ¢) = 4 x 2> (mod 8 x 2*)
because its proof does not involve whether 3|¢’ or not. Combining the two congruences above we can decide
Arg,(dy — ds;¢) via 48 (mod 7) and 4 (mod 8):

1,3,5,9,11,13
Arg,y(dy — ds;0) = % when 8=1,3,5,2,4,6.

This gives Table 8.25.
Finally we check Arg(ds — d4;¢) with dsas = dgaz =1 (mod 7):

/262 0 s (masgf s (mast -1
Argy (ds — dy: 0) = 9fc +1 sgn(s?n(mZ Z)/s%n(mi[)) ;
14 +35  sgn(sin(™%%)/sin(*%%)) = —1.
Since ¢’ is even, we have —38¢’ = 4 (mod 14) and the sign always changes.
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& (mod 42) 6 | 12 | 18 | 24 | 30 | 36
B 6 3 2 5 4 1
—3/3c? (mod 14) 10 6 2 12 8 4
G c/2 B B
Arg(dp —dz1): 3-8 | 3 | L | -5 5 | L | 3
(Argy+Argg)(do > dgsl) | 5 | 5 | 11 | 1 | T | T
Total Arg(dy — ds; 1) 3 2 2 2 -2 3
d¢==1 (mod 7)? - +
—63c? = ¢ (mod 7) 6 5 4 3 2 1
Argy(dy — d3;2) : & g s % % % 1
(Argy+Argg)(do = d332) | 5 | & | 11 | 11 | 7 | T
Total Arg(ds — ds;2) ﬁ ﬁ 15—4 15—4 fﬁ ﬁ
d¢==1 (mod 7)? + —
—273¢”? (mod 14) 6 | 12| 4 |10 2 | 8
72 5
Mo )T | § [ £ [ 23] b ¢
(Argy+Argg)(do = d333) | | 5 | 11 | 11 | 7 | T
Total Arg(ds — ds;3) 715—4 13—4 15—4 f% f% 1%
¢ =+1 (mod 7)? + —

Table 8.25: Table for Arg(d; — do; ) in (8.45); 2|c, 3|c, 71 c.

For Arg,(ds — da;?), first we have

—12¢s(ds, ¢) + 12¢s(ds, ¢) = —dy — dagsey + ds + dsgzep = —B¢ + B/ dagzey - dagzey (mod 3c). (8.59)
Then —12¢s(ds, ¢) + 12¢s(ds, ¢) is a multiple of ¢/. After dividing ¢’ we have
—84s(dyg, c) + 84s(ds, c) = —f + Bagas = 9B (mod 21).
because azas = 10 (mod 7) and agas = 1 (mod 3). We also have (8.54):
—12¢s(ds, ¢) + 12¢s(da, ¢) = 4 x 2* (mod 8 x 2*)

because its proof does not involve whether 3|¢’ or not. Combining the two congruence equations above we

can decide Arg,(ds — dy4;¢) with denominator 56 and numerator determined by 38 (mod 7) and 4 (mod 8),

hence 1,3,5,9,11,13
Arg,y(ds — dy; ) = % when 8=6,4,2,5,3,1.
This gives Table 8.26.
Comparing Tables 8.24, 8.25 and 8.26 we see that when 2|c/, 3|¢’ and 7t ¢/, Condition 8.3 holds and we

have proved (8.45).

8.2.5 7|¢

This case is 49|c and different from the former ones. We still denote ¢’ = ¢/7 while in this case 7|/, and

denote V(r,¢) = {d (mod ¢)* : d=r (mod ¢')} for r (mod ¢)*. Now |V (r,¢)| =7 and since (d+ ¢/,¢) =1
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c (mod 42) 6 12 18 24 30 36
8 6 | 3 | 2 5 | 4 1
98¢ (mod 14) 1210 8 | 6 | 4| 2
1) . 1, 987 5 3 1 1 3 5
Argy(ds = dg;1) 1 5 + 43 14 14 4 | 14| 14| 14
(Argy+Argy)(ds »dasl) | & | B | 4 | & | 1| &
Total Arg(ds — dy; 1) -2 z -1 z -3 2
d¢==1 (mod 7)? - +
183c? = 4¢/ (mod 7) 3 6 2 5 1 4
Argl(d3—>d4;2):%+47c —ﬁ 1% —% % —% ﬁ
(Argy+Args)(ds —»das2) | &5 | & | % | & | 4 | 4
Total Arg(ds — dy;2) 2 2 -3 3 -2 | -2
d¢==1 (mod 7)? + -
815 (mod 14) 0] 6 | 2 | 12] 8 | 4
Loy . 1, 8187 3 1 5 5 1 3
Arg,(ds — da;3) : 5 + =5 e v ol et v B v S B v S Bt v
(Argy+Args)(ds —»das3) | o5 | & | n | & | 4 | 14
Total Arg(ds — dy;3) -2 | -1 3 -3 L 2
¢ =+1 (mod 7)? + -

Table 8.26: Table for Arg(d; — do; ) in (8.45); 2|c, 3|¢, 71 c.

when (d,¢) =1, we can write V(r,¢) = {d,d+ ,d+2¢,--- ,d+6c'} for 1 <d < ¢ and d =r (mod ¢).
We claim that (8.1) is still true:

() () o

deV (r,c) 7

while this time we have seven summation terms. The way we prove (8.60) is to show that there are only three
cases for the sum: all at the outer circle (radius 1/sin(Z)), all at the middle circle (radius 1/sin(2Z)), and all
at the inner circle (radius 1/sin(2X)). Moreover, the seven points are equally distributed. Similar as before,
we still denote P;, P> and Ps for each term in (8.60) and investigate the argument differences contributed
from each term. Note that P;(d) = (—1)°*/sin(*2) has period /. Hence Arg,(d — di;¢) = 0 always.

If we take any d € V(r,c) and take a (mod ¢) such that ad = 1 (mod c¢), then for d, = d + ¢ and
a.d, =1 (mod ¢), we can take a, = a—c’, a—2c, a+3¢, a+3c¢', a—2¢, a—c’, when d = 1,2,3,4,5,6 (mod 7),
respectively.

In the following two cases, we show the proof when ¢ = 1. In the other cases ¢ = 2,3, only P; is affected
and we still get (8.60).

8.2.5.1 cis odd

First we suppose 31c¢. When d = 1,6 (mod ¢), by (8.10) we have —12¢s(ds, ¢) + 12¢s(d, ¢) = 0 (mod 6),

—12¢s(ds, ¢) + 12¢s(d,¢) = —dyx —ax + d+ a =0 (mod c¢), (8.61)
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and
—12¢s(dy, ¢) + 12¢s(d, ¢) = 2(%) — 2(2) = 0 (mod 8).

Then —12cs(d., ¢) + 12¢s(d, ) = 0 (mod 24c) and Argy(d — d.;€) = 0. Since Args(d — d.;€) = 2, we have
proved that the seven summands in (8.60) are equally distributed with the same radius.
When d = 2,5 (mod 7), only (8.61) is affected and becomes

—12c¢s(dy, ¢) + 12¢s(d,¢) = —dy — ax +d +a = ¢’ (mod c). (8.62)

After dividing 24¢’ we get Argy(d — dy;l) = % in this case and the seven points in (8.60) are still equally
distributed with the same radius.
When d = 3,4 (mod 7), (8.61) becomes

—12¢s(dy, ¢) + 12¢s(d, ¢) = —dy — as +d +a = —4c (mod ¢). (8.63)

We get Argy(d — di; l) = % and the same conclusion as before.

Then we investigate the case 3|¢’. The following congruence
—12¢s(dy, ¢) + 12¢s(d, c) = 2(%*) —2(4) =0 (mod 8)

still holds and we compute

—12¢s(dy, ¢) + 12¢s(d, ¢) = —dy — di(zey + d + dgzey = —¢' + c’m . m (mod 3c),
S0
—84s(dy,c) + 84s(d,c) = —1 + a.a (mod 21).
Since axa =1 (mod 3) and a. = a (mod 7), we have

0 (mod 21)  ifd=1,6 (mod 7),
— 84s(dy,c) +84s(d,c) = ¢ 9 (mod 21)  ifd=2,5 (mod 7), (8.64)
15 (mod 21) if d = 3,4 (mod 7).

Then —28s(d., ¢) +28s(d,c) =0,3,5 (mod 7) and Arg,(d — d.;{) = 0’3’5 by 8¢73 =1 (mod 7), respectively.
We still get the conclusion on equal distribution.
8.2.5.2 ¢ is even

The first case is 31 ¢/. Congruences (8.61), (8.62) and (8.63) are still valid here. By (8.11), we define A > 1
by 2*||¢’ and claim that
— 12¢s(d,, ¢) + 12¢s(d, ¢) = 0 (mod 8 x 2) (8.65)
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To compute this, we have

—12¢s(dy, ¢) + 12¢s(d, ¢) = — dy — m(@ +3c+1) — digsxary - 2¢(F)
+d+ digxory (@ +3c+ 1) + digeony - 2¢(5) (mod 8 x 2*%)
=—c + (P 43¢+ 1)disxory - dsxary
— di(sxary - 2¢(F) + dgxary - 2¢(5) (mod 8 x 2M).

After dividing ¢’ we have

—84s(d., ) + 84s(d, ¢) = =1 + d.d(c¢* + 3c+ 1) + 2(5-)dx — 2(5)d (mod 8)
= (¢ +1)(d+ 1) +2()dy — 2(£)d (mod 8).

By 2|(d + 1), we get

4 (mod 8) if 2|le, d =1 (mod 4),
d(d+1)(d+1)=<¢ 0 (mod8) if2|c, d=3 (mod 4), (8.66)
0 (mod 8) if 4c.

For 2(-)d. — 2(5)d (mod 8), when A > 2 is even, we have (f%) = (%) = 1; when A > 3 is odd, we
have (%) = (2) = 1. In either case, %> and 45! are of the same parity. Hence when 4|c, we have
(£)de — (§)d =0 (mod 4) and have proved (8.65) in this case.

When 2|¢, we have Table 8.27 for val.:= (F-)d. — (§)d (mod 4) using quadratic reciprocity. Combining

d (mod 8) 11357

d, (mod 8) when ¢ =2 (mod 8) |3 | 5| 7|1

val. 2101210

d, (mod 8) when ¢’ =6 (mod 8) |7 |1|3|5

val. 2101210

Table 8.27: Table for val.:= (F-)d. — (§)d (mod 4); 2|c, no requirement for (3, c), 7|c.

Table 8.27 and (8.66) we obtain (8.65).

Combining (8.65) with (8.61), (8.62) and (8.63) shows that Arg,(d — d,;{) is constant and proves the
equal distribution property.

When 3|c, we use (8.64) instead of (8.61), (8.62) and (8.63). This finishes the proof of (8.60)when 7|¢’.

Now we have proved claim (2) of Theorem 1.15.

8.3 Proof of Theorem 1.15, claim (3)

Here we prove claim (3) in Theorem 1.15: for all 1 < £ <6,n >0, 7|c and 71 A, if Al = +1 (mod 7) and
c=TA, we have
e(1)SO. (0,70 + 5, ¢, pr) + 20V/TS§l (0, Tn + 5, A, p7;0) = 0. (8.67)

We still denote ¢/ =¢/7 = A and V(r,¢) := {d (mod ¢)* : d =r (mod ¢)} for (r,c') = 1.
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First we rewrite the two Kloosterman sums. As fc = ¢A (mod 2), by (7.5) and (7.23),

_1\LA _ 3mical?
( 1) xp ( 7 ) 677ris(d,c)e <(77L + 5)d) )

e(§)885 (0, T+ 5,c,u7) = Y S ; (8.68)
d (mod c)* 7
By (7.25), when A¢ =1 (mod 7), we denote T by Al = 7T + 1 and
3177+ 5T)C : B 8.69
N Uy E <(212)> p—mis(B.A), <<7”1‘15)) ; (8.69)

B (mod A)
when A¢ = —1 (mod 7), we denote T by Al = 7T — 1 (hence Al — [Al] = AL —6="T7(T —1)) and

- Qiﬁ(fl)Aef[Aé] Z e ((S’(T —-1)2+ i(T -1+ 1)C> o mis(B,A) ((77%;5)3) _ (8.70)

)

B (mod A)*

For (r,¢') =1 and any d € V(r,c), we define P(d) as

_1)[Agg (_3cal®
P(d) = (1) Sin(gae) 14 )e_ms(d,c)e <(7”1'5)d) —: P(d) - Po(d) - Py(d). (8.71)

7
When A¢ = 7T + 1, we denote Q1(B) =1, Q3(B) = e(%%
3 1
Q(B) = ((QTQZZT)C) e BN and Q(B) = 2VT- Qu(B)Q2(B)Qs(B);  (8.72)

when A¢ = —1 (mod 7), we only change the definition of Q2(B) to

Q2(B):=e

<(§(T —1)2 + %(T -1+ 1)0) o~ is(B,A) (8.73)

A

and still denote Q(B) = 2v/7 - Q1(B)Q2(B)Q3(B).

We divide the cases into subsections, which depend on ¢’ = +1 (mod 7), ¢, that A is even or odd, and
that A is divisible by 3 or not. For each r (mod A)*, recall that d; € V(r, ¢) refer to the unique d; (mod ¢)*
such that dy = 1 (mod 7). We compare P(d;) and Q(B) given B = —d,T and C' = —7d;4y. For the case
when ¢ = —1 (mod 7), we choose ¢/l = Al =TT — 1, B=d;T and C = —7d;{4}. We will not repeat the
proof in this case but just list a few key intermediate steps at the end.

To compare P(d;) and Q(B), we denote Arg(Q; — P;;£) in the following way: suppose P;(d;) = Re'®
and Q;(B) = Rpe‘©®, then

Arg(Q; — Pj;0) =a ifandonlyif © —Op =« 27+ 2kn for k € Z.
We also denote Arg(Q — P;{) = 2321 Arg(Q; — Pj;£). Note that if Arg(Q; — Pj;{) = «, then

Arg(Q; — Pj;0) = a+k for all k € Z.
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With the notations above, we claim that the argument differences have the following cases:

3 5 3
= : ) =—=,——, — = ; et
Al=TT+1: Arg(Q — P;¢) VIR for £ =1,2,3; (8.74)
3 5 3

AL=TT—-1: A Pl)y=—-,—,—— f =1,2,3. .

(=17 rg(Q — P;{) > 11014 or / ,2,3 (8.75)
To visualize the argument differences, here are a few examples:
/=1, V(3,56), B=5. (Arg/2rT) =2,V (1,77), B=8. (Arg/2T) /=3, V(2,35), B=1. (Arg/27T)

/=2, V(5,119), B=8. (Arg/271) /=3, V(1,14), B=1. (Arg/27)

1o

The red circles among the figures are centered at the origin with radii csc(%), CSC(QTW), and csc(37”), respectively,
from the outside to the inside. For the styles of the six points P(d;) for d; € V (r,c), we have the following
condition. This condition has been proved by the tables in the former section, corresponding to the rows

marked with “¢’¢ = £1 (mod 7)?” whose entries are + or —.

Condition 8.4. When /¢ = £1 (mod 7), we have the following siz styles for these siz points P(d) for
deV(rc).

o {=1. When ¢ =1 (mod 7), the arguments going di — do — d3 — dy — ds — dg — dy are = 3

142 7
%, —%, %, %, respectively. When ¢’ = —1 (mod 7), the direction is reversed, as shown in the second
line.
dq — do — d3 — dy — ds — dg — di
;— 3 3 2 3 3 1
;— 3 3 2 3 3 1
¢’ =6 (mod 7) ~i 7 —7 7 Ev! —7

158



e ({ =2. The first line is for /¢ =1 (mod 7) and the second line is for <€ = —1 (mod 7).

d1 — dg — d3 — d4 — d5 — d@ — d1
/ — 1 5 3 5 1 2
/ — 1 5 3 5 1 2

e (=23. The first line is for /¢ =1 (mod 7) and the second line is for ¢ = —1 (mod 7).

3

dl — dg — d3 — d4 — d5 — d6 — dl
¢ =5 (mod 7) i 3 z 3
¢ =2 (mod 7) -

1
7 1

4
1 1 _3 1
7 14 7 14 7

Through some simple geometry arguments, one can show that, if the six points P(d) for d € V (r, ¢) satisfy
Condition 8.4, and Arg(Q — P;{) satisfies (8.74) and (8.75) in the corresponding cases, then we have

> P(d)+2Q(B) =0.

deV(r,c)
One hint is by using
cos(Z cos(2x cos(3T 1
(7)—|— - (7)— - (7)=\f7, where — for j = 1,2,3 are the radii.
® ") em(E n(E
sin(Z sin(=)  sin(%F) sin( %)

This proves (8.67) by our choices ¢ = TA, (A,7) = 1, as well as the fact that B = Fd;T runs over all residue
classes modulo A and coprime to A when r rums over all residue classes modulo ¢’ and coprime to ¢/, for
Al = ¢ =41 (mod 7). This prove Theorem 1.15.

Subsections §8.3.1-§8.3.4 are devoted to prove (8.74), i.e. the cases Al = £ =1 (mod 7).

83.1 /=1 (mod?7), 2144, 314

Recall d; =1 (mod 7) and d; = r (mod ¢’). Recall that we define 1 < 8 <6 as f¢’ =1 (mod 7) and here
B = ¢. Note that d; — A = 7B (mod TA):

0 (mod 7),

TB=di(1—-Al) =d; + (7T—d1)lA (mod 7TA), so 7B =
r (mod A).

On the other hand, d; — 8¢’ = r (mod A) and d; — B¢’ =0 (mod 7). The argument difference between Ps
and @3 is easy to compute:
7Arg(Qs — P3;¢) = 5dif = 5¢ (mod 7) (8.76)

which does not depend on n.
Recall dyj743 = a1 (mod 7TA) and Byay = 7dygay (mod A). We have

—84A(s(dy,7A) — s(B,A)) = —dy — a1 +di1(1 — BA) + 49d1{A}
= —d1BA — a1 +49d; 4y (mod 7A).

Hence

— 84A(s(d1, TA) — s(B, A))

{ —2 (mod 7) (8.77)

48d1{A} (mod A)
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We also have

—84A(s(dy, TA) — s(B,A)) = —TA— 1+ 2(&) + 7(A + 1) — 14(Z)
=6+2(%) +2(%) (%) (mod 8),

where the last step is because (4,7) = 1, (%) = (£) = 1 and 7B = d; (mod A). By A is odd and
Al =1 (mod T), we have (%) = (%)(71)%. Combining 6]12¢s(dy, ¢) and 6|124s(B, A) we conclude

18 (mod 24), if A =1 (mod 4) which requires:
¢=1, 4T,
¢=2, T=7 (mod 8);
orif A =3 (mod 4) which requires:
¢=3, T =8 (mod 12);
— 84A(s(dq1,7A) — s(B, A)) = (8.78)
6 (mod 24), if A =3 (mod 4) which requires:
=1, 2||T;
(=2, T =3 (mod 8);
orif A=1 (mod 4) which requires:
(=3, T =2 (mod 12).

Next we check the part of Qo other than e~™*(5:4) Since A is odd and T is even, we have

(3T 4+ 4iT)C = L(3T +1)(~Tdy(ay)
L(3 =340 —T)dy(ay
= —2Td1{A} (mod A)

Then the part of Qy other than e~ ™5(d:€) jg

0 (mod 7),

24 - 2dyay(—7T)\ [ 48digay(1— Af) . _ -
e < 51 7 A =el—Tfesd | with numerator = ¢ 48d;(4) (mod A), (8.79)
0 (mod 24).
We conclude that
24 - TA Arg(Qo — Po;£) = Ry (mod 168A4) (8.80)

where Ry is determined by (8.77), (8.78) and (8.79): Ry = 0 (mod A), Ry = —2 (mod 7), and Ry =

18,6 (mod 24) depending on the cases in (8.78). Therefore, by A¢ =1 (mod 7) and A (mod 4) in (8.78) we
conclude 93 11 13

Arg(Qe — Po3l) = # for ¢ =1,2,3. (8.81)

Then we compute Arg(Q1 — Py;¢). When ¢ = 1, since A is odd, A = 1 (mod 14). Note that both

a; = 1,8 (mod 14) give the same result due to the sign of sin(%*). It is direct to get (remember Q1 = i)

Arg(Ql%Pl;l):%ffffif. (882)
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When ¢ = 2, we get A =4 (mod 7) and

Arg(Ql—)Pl;Q):%—*—*:—f. (883)

Arg(Q1 —>P1;3)=%———f =——. (8.84)

Combining (8.82), (8.83), (8.84), (8.81), and (8.76), we get

3 5 3
Arg(Q—>P;€):—?, T4’ T4 for £ =1,2,3. (8.85)

This proves the claim (8.74).

8.3.2 dl/=1(mod7), 21A, 3|A

In this case (8.76) still holds. For Arg(Qs — P»;{), by (8.9) we have

—84A(8(d1, 7A) - S(B,A)) = —d1A€ — d1{21A} + 7(—d1T){3A} (mod 21A)

We have

—84,A(S(d17 7A) — S(B, A)) = —dlAg — dl{gA} + 49(d1 — dlAg){gA}
= —d| Al + (48d1 + dlAf)dl{gA}(dl — dlAé){gA}

o (8.86)
= iy Al (dieay (d — di Al (say — 1) +48d1 ()
= 48d;( 4y (mod 3A)
where in the second congruence we used
(T +Y)m — 49Ty = Ty (T + Y) {my (=482 — 49y) (mod m)
for (x +y,m) = (z,m) = 1 and in the last two congruences we used
MAT {myma} = M1 T{m,} (mod myms) (8.87)
for (z,mimso) = 1. We still have
— 84A(s(d1,7A) —s(B,A)) = —2 (mod 7). (8.88)

Moreover, (8.78) and (8.79) still hold except the second congruence in (8.79) should be changed to
48d;1 14y (mod 3A).
We conclude
24 - TA Arg(Q2 — P2;f) = Ry (mod 168A4) (8.89)

where Ry is determined by (8.86), (8.88), (8.78) and (8.79): Ry = 0 (mod 34), Ry = —2 (mod 7), and
Ry = 18,6 (mod 24) depending on the cases in (8.78). Therefore, by A¢ =1 (mod 7) and A (mod 4) in (8.78)
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we conclude 23, 11, 13
Arg(Qy — Py l) = # for £=1,2,3. (8.90)

The condition 3|A does not affect Arg(Q1 — Pi;¢) and Arg(Qs — Ps;¢). Combining (8.90) with (8.82),
(8.83), (8.84), and (8.76), we have proved (8.74) in this case.

8.3.3 /=1 (mod7), 2|A, 31A

Recall (8.76) which will be unchanged, while for Arg(Qs — P»;¥) we have (8.77) and need to use (8.11). Let
A > 1 be defined as 2*||A. Recall B = —d;T and 7T + 1 = A{. We have

—84A(s(dy, TA) — s(B, A))
=—di — di(sx2r} (4947 + 214 + 1) — 14dy 5,20 A(E)
+dy(1 — Al) +49(dy — d1Al) (g00y (A% + 3A + 1) + 14B g0, A(4)
= — di AL+ 49A° - dy Al(dy — d1 Al) (sony di (s x 22
+ 21A(6dy + dy Al)(dy — dy Al) (gxonydi (g any
+ (48dy + d1 Al)(dy — d1Al) (8527 (s x2r
+144 (m(g) _m(%)) (mod 8 x 2%).

Since 2*||A with A > 1, we apply (8.87) and 22 = 1 (mod 8) (for odd z) to get

—84A(s(dy, TA) — s(B, A)) = 6d1 A+ d1 A%0(1 + £) + 48d 43
+64 (B(g) - dl(%)) (mod 8 x 2%).

By (8.88), To determine B(4) — dl(%) (mod 4), we use the quadratic reciprocity

To—1 yo—1

(5)(2) ==+(=1)"> "=, where z, is the odd part of z
and the £ signis +ifx >0ory >0andis — if z <0 and y < 0. By B <0 odd and A > 0, we compute
A 7A B B d TR o
B(g) —di(G) = - T(F)(=1)"7 72 —du(55)(-1) = 72
4or o (8.91)
-1
= - T(E=32(5) (-7 77 —di(F)(-1) 77 7 (mod 4)
Here are the cases:
1. If 4] A, then we have T'=1 (mod 4), B = —d; (mod 4). Moreover, (W) = (%) always (note that A

is even and we have to consider (4-)). Now the above congruence (8.91) simplifies to (%)dl +1 (mod 4).
In this case d; A%/(1 4+ ¢) = 0 (mod 8 x 2*) and we conclude

2A + 48dy 143 (mod 8 x 20), (=1,2;

(8.92)
6A + 48d1 (4} (mod 8 x 2*), ¢ =3.

— 84A(s(d1,7A) — s(B,A)) = {

2. If2]|]A and ¢ = 1, then T'= 3 (mod 4), B = d; (mod 4) and the above (8.91) simplifies to d; — 1 (mod 4).
Then as A(12d; — 6 4+ 2d, A) = 2A (mod 8 x 2*), we conclude the same as the first line of (8.92).
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3. If 2| A and ¢ = 2, then T =1 (mod 4), B = —d; (mod 4), and (“=94) = —(4). Now (8.91) gives
dy — 1 (mod 4) and we again get the first line of (8.92).

4. If 2||A and € = 3, then T = 3 (mod 4), B = d; (mod 4), and (2) = (32)(2) = —1. Here (8.91) results
in d; — 1 (mod 4) again. Note that d; A%2/(1 +¢) = 0 (mod 8 x 2*) and we get the second line of (8.92).

Next we check the part of Qs other than e~™*(%¢) In this case A is even, so 3T 4 1 is even and we have

T+1—0o
B dl{A} (mod A)

3
GT?+17)C =308 . T(~Tdy1ay) =

When written with denominator 24 - TA, we have

o 24-T7TA

whose numerator is

0 (mod 7),
48d1{A} (mOd 3A),

36ALd + 48d = - 8.93
1A} HAy 4A + 48dy a4y (mod 8 x 2Y), £=1,3, (8.93)
48d;1 {4y (mod 8 x 2*4), 0 =2.
Combining the above computation with (8.77), (8.92) and (8.8), we get
11,2
Arg(Qs — Py l) = 911,27 for £=1,2,3. (8.94)

Then we compute Arg(Qqy — Pyi;£). When £ =1, since A is even, % =4 (mod 7). Note that a; =1 (mod 14)

because a; is odd. It is direct to get (remember Q1 = i)

1 5 1 13
Arg(Qr = Pil) =5 -2 -7 =5 (8.95)
When ¢ = 2, we get 4 =2 (mod 7) and
1 3 1 5
Arg(Qr — Pii2) =5 — 5 — 7 = —50. (8.96)
When ¢ = 3, we have 4 =6 (mod 14) and
1 1 1 3
Arg(Qr = Pi3) =5 — - — 7 = o0 (8.97)

Combining (8.95), (8.96), (8.97), (8.94), and (8.76), we get

Arg(Q = Pty =5 2 3

——,— f =1,2,3. .
= 1414 or / ,2,3 (8.98)

834 /=1 (mod 7)), 2|4, 3|A

Comparing to the former case, the only difference in getting Arg(Q2 — P»;¢) in (8.94) is that we should
using (8.86) instead of (8.77). The result (8.94) still holds in this case. The condition 3|4 or 3t A does not
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affect the computation for Arg(Qq — Pi;¢) and Arg(Qs — Ps; /), hence we still have
5 3
Arg(Q > Pty =——,——,— for{=1,2,3. (8.99)

Now we have finished the discussion in all the cases for A when A¢ = 1 (mod 7) and proved (8.67).
For the other case A¢ = —1 (mod 7), we will not repeat the same process but just list the key argument
differences below. For every r (mod ¢')*, we compare P(d) (8.71) given d = d; € V(r,¢) and Q(B) (8.73)
given T := # >0, B=dT and C = —7@. Now 7B = dy + d1 Al. We shall get Table 8.28.

Case 21 A: (=1|¢=2|{¢=3
Arg(Q1 — P13 0) —% % %
Arg(Q2 = Pyil) | &% | —3 | —5
Arg(Qs = Psil) | | =% | -3
Arg(Q = P;0) | 2 | o

Case 2|A: t=1|¢=2|¢=3
Arg(Q1 — Py30) % % —2%
Arg(Qz — Poil) | — | — 3 =
e T A R
Arg(Q - P;0) | 2 ol

Table 8.28: Table for the case A = —1 (mod 7)

We have finished the proof of claim (3) in Theorem 1.15 and finished the proof of this theorem.

8.4 An extra coincidence

The following lemma may provide some information about the key equation defining z, for every integer

r >0in (2.37):
2r+1 1
2— _— =
5 x+24 0.

3
—T
2

Lemma 8.5. Fork € Z and k > 2, let zx be the only root in (0, %) of the quadratic equation %x2—2k771x+2—14 =
0. Let 0 < [plag < 24 denote the residue of a prime p modulo 24. Then the following two quantities are equal:
(1) the smallest prime p > :17,;1;

(2) the smallest prime p such that Sp=2 (SLa(Z),v,?) = k, where Sy(I',v) is the space of weight w

holomorphic cusp forms on I' with multiplier system v.

Remark. Let || denote the floor of z. Since M”‘%ﬂ # 2 (mod 12) for every prime p # 3, we have

-2
dim Sprz (SLQ(Z)7 V77_p) = dim SM (SLQ(Z)) = \‘WJ .

Clearly the dimension of this space is non-decreasing when p increases.

Proof. First observe that when k = 2, we have 25 ' = 34.97--- and p = 37 is the prime for both (1) and (2).

Then we consider k& > 3.
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Let the positive integer ¢ be defined as p = [p]ag + 24¢. Then

{[p]zz;-l—p—?J: t 1 < [plaa <11,
24 t+1 13 < [pas < 23.

This shows that for p in condition (2) we must have 13 < [p]a4 < 23 and k =t + 1. Hence, p in condition (2)

is the smallest prime such that

[pl2a +p —2

51 >k & [plaa+12t>12k+1 < p> 24k —11.

We claim that —2 < x,;l — (24k — 11) < 0. If this is true, since 24k — 11 is odd, there is no prime between
xgl and 24k — 11, hence the lemma is proved. It is easy to compute that x,;l =12k — 6 + 12vk%? — k. When
k > 3, we have

-1 -1 1 5 1
k2 —k—k= € , —= c(—, —).
V1-1/k+1 <1+\/2/3 2) 9 2
Then

15

apt — (24k —11) :5+12( k2—k—k> € (9,1) C (-2,0).

This finishes the proof. O
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