
c© 2024 Qihang Sun



HALF-INTEGRAL WEIGHT KLOOSTERMAN SUMS
AND INTEGER PARTITIONS

BY

QIHANG SUN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois Urbana-Champaign, 2024

Urbana, Illinois

Doctoral Committee:

Professor Kevin Ford, Chair
Professor Scott Ahlgren, Director of Research
Emeritus Professor Bruce C. Berndt
Assistant Professor Jesse Thorner



Abstract

Kloosterman sums are special exponential sums which appear in many problems in number theory. Klooster-

man first introduced these sums in [1] to investigate whether the quadratic form a1n
2
1 + a2n

2
2 + a3n

2
3 + a4n

2
4

with fixed ai ∈ N represents all sufficiently large natural numbers. Another application is to estimate the

shifted sum of divisor functions. Let τ(n) be the number of divisors of the positive integer n and

D(N, f) :=

N∑
n=1

τ(n)τ(n+ h), for some fixed integer h ≥ 1.

Heath-Brown [2] applied the Weil bound (1.1) of Kloosterman sums to prove that

D(N, f) = explicit main terms +O(N
5
6 +ε), uniformly for 1 ≤ h ≤ N 5

6 .

Using Kuznetsov’s trace formula, Deshouillers and Iwaniec [3] obtained a much better error bound O(N
2
3 +ε)

for all h ≥ 1.

The integer partition function p(n), which is the number of ways to write n as a sum of positive integers,

has been researched for remarkable properties by Euler, Hardy and Ramanujan [4]. Rademacher’s exact

formula [5] states that p(n) can be written as a sum of exponential sums. The generating function of p(n)

is q
1
24 /η(z), where η(z) is Dedekind’s eta function with q = e2πiz and Im z > 0. Since η(z) is a weight 1

2

modular form, using the definition of multiplier systems, we are able to rewrite the exponential sums in

Rademacher’s exact formula as generalized Kloosterman sums. The bounds on Kloosterman sums give the

growth rate of errors for such approximations.

There are very famous congruence properties of the partition function p(n) by Ramanujan:

p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7), p(11n+ 6) ≡ 0 (mod 11).

In 1944, Dyson [6] defined the rank of a partition of n. If we let N(a, b;n) denote the number of partitions

of n with rank congruent to a (mod b), then Dyson conjectured that 5N(j, 5; 5n + 4) = p(5n + 4) and

7N(j, 7; 7n+ 5) = p(7n+ 5) for all j. By the work of Bringmann and Ono [7], [8], the generating functions for

the ranks of partitions have similar properties as q
1
24 /η(z). The work of Bringmann and Ono in the theory of

harmonic Maass forms discovers beautiful properties about the rank of partitions. For example, in [7] they

proved the exact formula for the modulo 2 case, which perfected the asymptotics by Ramanujan, Dragonette

[9] and Andrews [10].

If we have better estimates for the sums of half-integral weight Kloosterman sums, we are able to obtain

better tail bounds for the Rademacher-type exact formulas, which control the efficiency of their convergence.

The recent work by Ahlgren and Andersen [11], Ahlgren and Dunn [12], and Andersen and Wu [13] provide
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improved error bounds based on their improvement on the estimates for Kloosterman sums.

The author [14], [15] generalized their work to the Kloosterman sums with a wider class of multiplier

systems, which are half-integral weight and include the commonly used theta- and eta-multipliers twisted

by quadratic characters. The resulting estimates give a uniform version of the general result by Goldfeld

and Sarnak [16] for sums of such Kloosterman sums with a power-saving bound in the parameters m and n.

Following the method in [7], the author provided a detailed proof of the exact formula for the rank modulo 3

case in [14].

Then what about the exact formulae in the rank modulo 5 and 7 cases, where Ramanujan’s congruences

appear? Bringmann [17] proved the general asymptotics for all odd moduli, while the Kloosterman type

sums are hard to interpret as Kloosterman sums. Thanks to the theory of vector-valued Maass forms from [8]

and the explicit transformation laws by Garvan [18], the author finds the interpretation as vector-valued

Kloosterman sums. Combining with some generalization of [16], the author finally provides the proof for the

exact formula of rank modulo primes p ≥ 5. The author also has a striking observation between the interesting

cases p = 5, 7, where the Kloosterman sums become identically zero (or become equal for those defined on

different cusp pairs). After a long study of the cases depending on congruence properties of the Dedekind

sums, the author proves this cancellation property and provides a new proof for the Dyson’s conjecture

5N(a, 5; 5n+ 4) = p(5n+ 4) and 7N(a, 7; 7n+ 5) = p(7n+ 5) which implies Ramanujan’s congruences.
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Chapter 1

Introduction

In this thesis, we collect the author’s results on estimates for sums of Kloosterman sums and their applications

to the theory of integer partitions. These estimations generalize the work of Goldfeld and Sarnak [16], Sarnak

and Tsimerman [19], as well as the work of Ahlgren, Andersen and Dunn [11], [12], [20]. Thanks to the

theory for ranks of integer partitions developed by Bringmann, Ono and Garvan [7], [8], [17], [18], [21], the

author is able to apply the certain estimates, especially the uniform bounds for sums of Kloosterman sums,

to generalize Rademacher’s exact formula for ranks of partitions modulo primes.

The first paper [14] for the mixed-sign case of Theorem 1.7 has been published in Forum Mathematicum

and we record the proof mainly in Chapter 4. The second one for the same-sign case of Theorem 1.7

was submitted for publication and we record the proof in Chapter 5. The author’s work on the proof of

Theorem 1.14 and Theorem 1.15 has not been submitted yet, but we record these results in Chapter 7 and

Chapter 8 in this thesis.

1.1 Standard Kloosterman sums

For a positive integer c, the standard Kloosterman sum

S(m,n, c) :=
∑

d (mod c)∗

e

(
md+ nd

c

)
, e(z) := e2πiz, dd ≡ 1 (mod c)

has a trivial bound c and a well-known Weil bound

|S(m,n, c)| ≤ σ0(c)(m,n, c)
1
2 c

1
2 , (1.1)

where σk(`) =
∑
d|` d

k is the divisor function. The Weil bound implies a square-root cancellation for estimating

∑
c≤x

S(m,n, c)

c
� σ0((m,n))x

1
2 log x. (1.2)

In the 1960s, Linnik [22] and Selberg [23] pointed out the connection between such sums and modular forms.

They conjectured that there should be a full cancellation, which was reformulated by Sarnak and Tsimerman
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in [19] as ∑
c≤x

S(m,n, c)

c
�ε |mnx|ε.

Kuznetsov [24] applied his famous trace formula which resulted in the bound

∑
c≤x

S(m,n, c)

c
�m,n x

1
6 (log x)

1
3 .

Sarnak and Tsimerman [19] obtained a bound which is uniform in m and n for mn > 0:

∑
c≤x

S(m,n, c)

c
�ε

(
x

1
6 + (mn)

1
6 + (m+ n)

1
8 (mn)

θ
2

)
(mnx)ε, (1.3)

where θ is an admissible exponent towards the Ramanujan-Petersson conjecture for GL2 /Q. One may take

θ = 7
64 by the work of Kim and Sarnak [25].

1.2 Multiplier systems and general Kloosterman sums

Denote the modular group SL2(Z) := {γ ∈ M2(Z) : det γ = 1}, where M2(Z) is the set of 2 by 2 matrices

with integer entries. Each γ =
(
a b
c d

)
∈ SL2(Z) acts on the upper-half complex plane

H := {z ∈ C : z = x+ iy, x, y ∈ R, y = Im z > 0}

as a Mobiüs transformation z → γz := az+b
cz+d . This operation satisfies γ1(γ2z) = (γ1γ2)z. When c 6= 0, this

definition can be extended to H ∪ {∞} ∪Q by defining

γ(−dc ) =∞ and γ∞ =
a

c
;

when c = 0, we define γ∞ =∞.

For any subgroup Γ of SL2(Z) of finite index, the quotient topological space Γ \H is a Hausdorff space.

After adding the set of points Q ∪ {∞}, Γ \ H is compactified. We define the cusps of Γ \ H, or simply

the cusps of Γ, as the equivalence classes of Q ∪ {∞} under the action of Γ. There are several important

subgroups of SL2(Z): let N ≥ 1 be an integer, we define

Γ0(N) :=

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
, (1.4)

Γ1(N) :=

{(
a b

c d

)
∈ SL2(Z) : a, d ≡ 1 (mod N), c ≡ 0 (mod N)

}
, (1.5)

Γ(N) :=

{(
a b

c d

)
∈ SL2(Z) : a, d ≡ 1 (mod N), b, c ≡ 0 (mod N)

}
. (1.6)

Fixing the argument (−π, π], for any γ ∈ SL2(R) and z = x+ iy ∈ H, we define the automorphic factor

j(γ, z) :=
cz + d

|cz + d|
= ei arg(cz+d) (1.7)

2



and the weight k slash operator

(f |kγ)(z) := j(γ, z)−kf(γz) (1.8)

for k ∈ R.

Definition 1.1. We say that ν : Γ→ C× is a multiplier system of weight k if

(i) |ν| = 1,

(ii) ν(−I) = e−πik, and

(iii) ν(γ1γ2) = wk(γ1, γ2)ν(γ1)ν(γ2) for all γ1, γ2 ∈ Γ, where

wk(γ1, γ2) := j(γ2, z)
kj(γ1, γ2z)

kj(γ1γ2, z)
−k.

If ν is a multiplier system of weight k, then it is also a multiplier system of weight k′ for any k′ ≡ k

(mod 2), and its conjugate ν is a multiplier system of weight −k. One can check the basic properties that

ν(γ)ν(γ−1) = 1, ν(γ( 1 b
0 1 )) = ν(γ)ν(( 1 1

0 1 ))b. (1.9)

For any cusp a of a congruence subgroup Γ ≤ SL2(Z) where ( 1 1
0 1 ) ∈ Γ, let Γa denote its stabilizer in Γ.

For example, Γ∞ = {±( 1 b
0 1 ) : b ∈ Z}. Let σa ∈ SL2(R) denote a scaling matrix of a, which means σa satisfies

σa∞ = a and σ−1
a Γaσa = Γ∞. (1.10)

We define αν,a ∈ [0, 1) by the condition

ν
(
σa( 1 1

0 1 )σ−1
a

)
= e(−αν,a). (1.11)

The cusp a is called singular if αν,a = 0. When a =∞ we drop the subscript and denote αν := αν,∞. For

n ∈ Z, define na := n− αν,a and n∞ = ñ := n− αν .

The Kloosterman sums for the cusp pair (∞,∞) with respect to ν are given by

S(m,n, c, ν) :=
∑

0≤a,d<c
γ=
(
a b
c d

)
∈Γ

ν(γ)e

(
m̃a+ ñd

c

)
=

∑
γ∈Γ∞\Γ/Γ∞
γ=
(
a b
c d

)
ν(γ)e

(
m̃a+ ñd

c

)
. (1.12)

They satisfy the relationships

S(m,n, c, ν) =

{
S(1−m, 1− n, c, ν) if αν > 0,

S(−m,−n, c, ν) if αν = 0,
(1.13)

because

nν =

{
−(1− n)ν if αν > 0,

n if αν = 0.
(1.14)

There are two fundamental multiplier systems of weight 1
2 . The theta-multiplier νθ on Γ0(4) is given by

θ(γz) = νθ(γ)
√
cz + d θ(z), γ =

(
a b
c d

)
∈ Γ0(4) (1.15)

3



where

θ(z) :=
∑
n∈Z

e(n2z), νθ(γ) =
( c
d

)
ε−1
d , εd =

{
1 d ≡ 1 (mod 4),

i d ≡ 3 (mod 4),

and
( ·
·
)

is the extended Kronecker symbol. The eta-multiplier νη on SL2(Z) is given by

η(γz) = νη(γ)
√
cz + d η(z), γ =

(
a b
c d

)
∈ SL2(Z) (1.16)

where

η(z) := q
1
24

∞∏
n=1

(1− qn), q = e(z). (1.17)

Let ((x)) := x−bxc− 1
2 when x ∈ R \Z and ((x)) := 0 when x ∈ Z. We have the explicit formula [26, (74.11),

(74.12)]

νη(γ) = e

(
−1

8

)
e−πis(d,c)e

(
a+ d

24c

)
, s(d, c) :=

∑
r (mod c)

((r
c

))((dr
c

))
, (1.18)

for all c ∈ Z \ {0} and νη (( 1 b
0 1 )) = e

(
b
24

)
. Another formula [27] for c > 0 is

νη(γ) =


(
d
c

)
e
{

1
24

(
(a+ d)c− bd(c2 − 1)− 3c

)}
if c is odd,(

c
d

)
e
{

1
24

(
(a+ d)c− bd(c2 − 1) + 3d− 3− 3cd

)}
if c is even.

(1.19)

The properties νη(−γ) = iνη(γ) when c > 0 and e( 1−d
8 ) = ( 2

d )εd for odd d are convenient.

1.3 Estimates for sums of Kloosterman sums

There is a famous result by Goldfeld and Sarnak [16] estimating the sums of general Kloosterman sums. Let

Γ be a congruence subgroup of SL2(Z) with ( 1 1
0 1 ) ∈ Γ. Let k ∈ R and ν be a weight k multiplier system on Γ.

Define

β := lim sup
c→∞

log |S(m,n, c, ν)|
log c

. (1.20)

For m,n ∈ Z, we define the Kloosterman-Selberg zeta function as

Zm,n,ν(s) :=

∞∑
c=1

S(m,n, c, ν)

c2s
. (1.21)

By the definition of β, one can see that Zm,n,ν(·) is defined and holomorphic on Re s > β+1
2 . Goldfeld and

Sarnak proved the following theorem.

Theorem 1.2 ([16, Theorem 1]). The function Zm,n,ν(s) is meromorphic in Re s > 1
2 with at most a finite

number of simple poles in ( 1
2 , 1).

Based on the growth condition of Zm,n,ν(s), Goldfeld and Sarnak obtained the following estimate:

Theorem 1.3 ([16, Theorem 2]). For any ε > 0,

∑
c≤x

S(m,n, c, ν)

c
=

∑
sj∈( 1

2 ,1)

τj(m,n)
x2sj−1

2sj − 1
+Om,n,k,Γ,ν,ε

(
x
β
3 +ε
)
.

4



Here the sum runs over the simple poles of Zm,n,ν(s) in ( 1
2 , 1) and τj(m,n) depends on m,n, ν, and Γ.

We will show the formula for τj(m,n) in Theorem 1.7 but not repeat it here. The above bound does not

show the dependence on m and n, while the methods in [16] guaranteed a polynomial growth for them. We

will leave this discussion until Chapter 3. The uniform bounds for sums of general Kloosterman sums, like

(1.3), has been obtained by Ahlgren and Andersen in special cases:

Theorem 1.4 ([11, Theorem 1.3, Theorem 9.1]). For m > 0 and n < 0 we have

∑
c≤x

S(m,n, c, νη)

c
�ε

(
x

1
6 + |mn| 14

)
|mn|ε log x.

Moreover, for n < 0 and 0 < δ < 1
2 , we have

∑
c≤X

S(1, n, c, νη)

c
�δ,ε |n|

13
56 +εX

3
4 δ +

(
|n| 41

168 +ε +X
1
2−δ
)

logX.

Let ψ be the conjugate of the weight 3
2 multiplier system of η(z)5/η(2z)2 on Γ0(2) (hence ψ is a weight 1

2

multiplier system on Γ0(2)), then ψ is exactly the multiplier system defined at [12, (3.4)]. Ahlgren and Dunn

proved:

Theorem 1.5 ([12, Theorem 7.1]). Suppose that 24n− 1 is positive and squarefree and that 0 < δ < 1
2 . For

X ≥ 1 and ε > 0 we have

∑
2|c≤x

S(0, n, c, ψ)

c
�δ,ε |n|

13
56 +εX

3
4 δ +

(
|n| 143588 +ε +X

1
2−δ
)
Xε.

The author is able to generalize these results to a wide class of half-integral weight multiplier systems.

Besides the uniform bound, the author also recovers the τj terms in Goldfeld and Sarnak’s result (Theorem 1.3)

via the trace formula, which is a different method from the original paper.

Definition 1.6 (Definition 1.1 in [14], [15]). Let (k, ν′) = ( 1
2 , (
|D|
· )νθ) or (− 1

2 , (
|D|
· )νθ) where D is some even

fundamental discriminant and νθ is the multiplier for the theta function. We say that a weight k multiplier ν

on Γ = Γ0(N) is admissible if it satisfies the following two conditions:

(1) Level lifting: there exist positive integers B and M such that the map L : (L f)(z) = f(Bz) gives:

(i) an injection from weight k automorphic eigenforms of the hyperbolic Laplacian ∆k on (Γ0(N), ν)

to those on (Γ0(M), ν′) and keeps the eigenvalue;

(ii) an injection from weight k holomorphic cusp forms on (Γ0(N), ν) to weight k holomorphic cusp

forms on (Γ0(M), ν′).

Here M is a multiple of 4 and M depends on B.

(2) Average Weil bound: for x > y > 0 and x− y � x
2
3 , we have

∑
N |c∈[y,x]

|S(m,n, c, ν)|
c

�ν,ε (
√
x−√y)|m̃ñx|ε.

5



Remark. The exponent 2
3 = 1− δ comes from a parameter δ in the proof which is finally chosen to be 1

3 . An

individual Weil-type bound on S(m,n, c, ν) can imply the average bound specified in condition (2), but our

result only needs this weaker requirement.

The author proved the following theorem in two papers and states the results together here. The difference

is that [14] is for the case m̃ñ < 0 while [15] is for the case m̃ñ > 0. Although the two cases and conclusions

look similar, there are significant differences in the proofs.

Theorem 1.7 ([14, Theorem 1.4], [15, Theorem 1.3]). Suppose m̃ñ 6= 0 and ν is a weight k = ± 1
2 admissible

multiplier on Γ0(N). We have

∑
N |c≤X

S(m,n, c, ν)

c
=
∑

sj∈( 1
2 ,

3
4 )

τj(m,n)
X2sj−1

2sj − 1
+Oν,ε

((
Au(m,n) +X

1
6

)
(m̃ñX)ε

)
, (1.22)

where for B and M in Definition 1.6, we factor B ˜̀ = t`u
2
`w

2
` with t` square-free, u`|M∞ positive and

(w`,M) = 1 for ` ∈ {m,n}. Here τj(m,n) are the coefficients in [16] (as corrected by [28, Proposition 7]):

τj(m,n) = 2ikρj(m)ρj(n)π1−2sj (4m̃ñ)1−sj Γ(sj + sgn ñ · k2 )Γ(2sj − 1)

Γ(sj − k
2 )

,

and

Au(m,n) :=
(
m̃

131
294 + um

) 1
8
(
ñ

131
294 + un

) 1
8

(m̃ñ)
3
16

� (m̃ñ)
143
588 + m̃

143
588 ñ

3
16 u

1
8
n + m̃

3
16 ñ

143
588 u

1
8
m + (m̃ñ)

3
16 (umun)

1
8 .

As a corollary or a simpler version of the above theorem, we have

Corollary 1.8. With the same setting and notations as Theorem 1.7, we suppose B ˜̀ is square-free or coprime

to N for ` ∈ {m,n}, then

∑
N |c≤X

S(m,n, c, ν)

c
=
∑

sj∈( 1
2 ,

3
4 )

τj(m,n)
X2sj−1

2sj − 1
+Oν,ε

((
|m̃ñ| 143588 +X

1
6

)
|m̃ñX|ε

)
. (1.23)

Remark. We have the following notes for the theorem and corollary above:

• The notation u|M∞ means u|MC for some positive integer C.

• When um and un are both ON,ν(1), we have Au(m,n)�N,ν |m̃ñ|
143
588 .

• In general, Au(m,n)�N,ν (m̃ñ)
1
4 .

• The theorem also applies to the case m̃ < 0 and ñ < 0 because of (1.13) by conjugation.

• When rj = i
4 , we have τj(m,n) = 0 unless sgn m̃, sgn ñ, and sgn k are all the same (see (2.13) and

(2.14)).

We modify our estimate to get the following bound suitable for the applications in Chapter 6. Recall that

αν ∈ [0, 1) is defined as ν(( 1 1
0 1 )) = e(−αν).
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Theorem 1.9 ([14, Theorem 1.6], [15, Theorem 1.5]). With the same setting as Theorem 1.7, we suppose

B ˜̀ is square-free or coprime to N for ` ∈ {m,n}. Then for β = 1
2 or 3

2 and α > 0, when τj(m,n) = 0 for

rj = i
4 , we have ∑

N |c>α
√
|m̃ñ|

S(m,n, c, ν)

c
Mβ

(
4π
√
|m̃ñ|
c

)
�α,ν,ε |m̃ñ|

143
588 +ε, (1.24)

where Mβ is the Bessel function Iβ or Jβ.

Remark. We prove Theorem 1.9 in the end of Chapter 5. The best bound, in the particular case S(1, n, c, νη)

with the eta-multiplier, was recently given by Andersen and Wu [13, (2.10)]: for n > 0,

∑
c≤x

S(1, 1− n, c, νη)

c
�ε

(
x

1
6 + |d| 29w 1

3

)
(nx)ε (1.25)

where d and w are given by 1− 24n =: dw2 such that d ≡ 1 (mod 24) is a negative fundamental discriminant.

They proved this stronger bound by applying a hybrid subconvexity bound of twisted L-functions which

generalizes Young’s result in [29].

1.4 Ranks of partitions and Rademacher-type exact formulas

From now on, we denote p(n) as the partition function, which is the number of ways to write the natural

number n as a sum of a non-increasing sequence of positive integers. For example, we have p(3) = 3 (3, 2 + 1

and 1 + 1 + 1), p(4) = 5 (4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1), and p(100) = 190 569 292. In 1918,

Hardy and Ramanujan [4] proved the asymptotics for p(n):

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

Later, in 1938, Rademacher [5] proved the exact formula of p(n). If we define

Ac(n) :=
1

2

√
c

12

∑
x (mod 24c)

x2≡−24n+1 (mod 24c)

χ12(x)e
( x

12c

)
, (1.26)

where χ12 is the Dirichlet character ( 12
· ) modulo 12, e(z) := e2πiz, and the sum runs over the residue classes

modulo 24c, then Rademacher’s exact formula [5, (1.8)] can be written as [11, (1.2), (1.3)]

p(n) =
1

π
√

2

∞∑
c=1

Ac(n)
√
c
d

dn

(
sinh

(
π
c

√
2
3 (n− 1

24 )
)

√
n− 1

24

)

=
2π

(24n− 1)
3
4

∞∑
c=1

Ac(n)

c
I 3

2

(
4π
√

24n− 1

24c

)

=
2πe(− 1

8 )

(24n− 1)
3
4

∞∑
c=1

S(1, 1− n, c, νη)

c
I 3

2

(
4π
√

24n− 1

24c

)
.

(1.27)
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Ramanujan also obtained the famous congruence properties of p(n):

p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7), p(11n+ 6) ≡ 0 (mod 11). (1.28)

In 1944, Dyson [6] defined the rank of a partition to strikingly interpret the above congruences. Suppose

Λ = {Λ1 ≥ Λ2 ≥ · · · ≥ Λκ} is a partition of n, i.e.
∑κ
j=1 Λj = n. Let

rank(Λ) := Λ1 − κ

define the rank of this partition, and let the quantities N(m,n) and N(a, b;n) be defined by

N(m,n) := #{Λ is a partition of n : rank Λ = m} (1.29)

and

N(a, b;n) := #{Λ is a partition of n : rank Λ ≡ a (mod b)}. (1.30)

Let q = exp(2πiz) = e(z) for z ∈ H (the upper-half complex plane) and w be a root of unity. It is well known

(e.g. [8, (1.4)]) that the generating function of N(m,n) can be written as

R(w; q) := 1 +

∞∑
n=1

∞∑
m=−∞

N(m,n)wmqn = 1 +

∞∑
n=1

qn
2

(wq; q)n(w−1q; q)n
, (1.31)

where (a; q)n :=
∏n−1
j=0 (1 − aqj). For example, R(1; q) = 1 +

∑∞
n=1 p(n)qn is the generating function for

partitions. For integers b > a > 0, denote A(ab ;n) as the Fourier coefficient of R(ζab ; q):

R(ζab ; q) =: 1 +

∞∑
n=1

A
(a
b

;n
)
qn

where ζb = exp( 2πi
b ) is a b-th root of unity. The following identity is easy to get but helpful in understanding

the relation between A(ab ;n) and N(a, b;n):

bN(a, b;n) = p(n) +

b−1∑
j=1

ζ−ajb A

(
j

b
;n

)
. (1.32)

It is not hard to show that A( jb ;n) ∈ R for 1 ≤ j ≤ b−1 because N(a, b;n) = N(b−a, b;n), A( jb ;n) = A( b−jb ;n)

and ζ−ajb + ζ
−a(b−j)
b ∈ R.

The function R(w; q) has many beautiful connections and properties. When w = −1, it is known that

N(0, 2;n)−N(1, 2;n) = A( 1
2 ;n) is the Fourier coefficient of Ramanujan’s third order mock theta function

f(q). We know that the Hardy-Ramanujan asymptotic

p(n) ∼ 1

4n
√

3
eπ
√

2
3n

was perfected by Rademacher’s exact formula (1.27). Similarly, Dragonette [9] and Andrews [10] improved

the asymptotic formula of A( 1
2 ;n) which was conjectured by Ramanujan. The exact formula for A( 1

2 ;n) was

later proven by Bringmann and Ono:
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Theorem 1.10 ([7, Theorem 1.1]). The Andrews-Dragonette conjecture is true:

A

(
1

2
;n

)
=

π

(24n− 1)
1
4

∞∑
k=1

(−1)b
k+1
2 cA2k(n− k(1+(−1)k)

4 )

k
I 1

2

(
π
√

24n− 1

12k

)
. (1.33)

Remark. Recall the weight 1
2 multiplier ψ on Γ0(2) defined before Theorem 1.5 (see [12, (3.4), Lemma 3.2]).

By [12, (3.5)] and [12, Lemma 3.1], we have

(−1)b
c+1
2 cA2c

(
n− c(1 + (−1)c)

4

)
= e( 1

8 )S(0, n, 2, ψ),

so we can rewrite the exact formula (1.33) of A( 1
2 ;n) as

A

(
1

2
;n

)
=

2π e(− 1
8 )

(24n− 1)
1
4

∑
2|c>0

S(0, n, c, ψ)

c
I 1

2

(
π
√

24n− 1

6c

)
. (1.34)

The author [14] provided a detailed proof of A( 1
3 ;n) = A( 2

3 ;n), which is the Fourier coefficient of

R(ζ3; q) = R(ζ2
3 ; q).

Theorem 1.11 ([14, Theorem 2.2]). We have

A

(
1

3
;n

)
= A

(
2

3
;n

)
=

2π e(− 1
8 )

(24n− 1)
1
4

∑
3|c>0

S(0, n, c, ( ·3 )νη)

c
I 1

2

(
π
√

24n− 1

6c

)
. (1.35)

Let Rj(n, x) be the tail sum on n > x of the above exact formulas for A( 1
j ;n): j = 1 for (1.27), j = 2 for

(1.33) (see (1.34)) and j = 3 for (1.35). For example,

R3(n, x) =
2π e(− 1

8 )

(24n− 1)
1
4

∑
3|c>x

S(0, n, c, ( ·3 )νη)

c
I 1

2

(
π
√

24n− 1

6c

)
. (1.36)

Each multiplier system ν in these sums satisfies αν = 1
24 or 23

24 with B = 24 and M |576 in Definition 1.6.

Clearly both 24n− 1 and 24n− 23 are always coprime with M . The admissibility of each multiplier is proved

in [11], [12] and Proposition 4.1, respectively. Now we can apply Theorem 1.9 to get a power-saving with

exponent 1
4 −

143
588 = 1

147 less:

Theorem 1.12. For α > 0 we have

Rj(n, α
√
n)�α,ε

{
n−

1
2−

1
147 +ε, j = 1;

n−
1

147 +ε, j = 2, 3.

Remark. The previous results on the growth rates for Rj(n, α
√
n) are n−

1
2 +ε for j = 1 and nε for j = 2, 3.

These results come from careful applications of the circle method. We will discuss these milestones in

Chapter 6.

When j = 1, 2, this improves [12, Theorem 1.4, Theorem 1.1] by removing the square-free requirement.

Recently Andersen and Wu [13, Theorem 1.1] proved a stronger bound when j = 1 based on their estimate

(1.25):

R1(n, α
√
n)�α,ε n

− 1
2−

1
36 +ε.
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Another new contribution in this thesis is to extend to the case j = 3.

In 2009, Bringmann [17] used the circle method to find the asymptotics of A( `u ;n) for general odd u.

Let s(d, c) be the Dedekind sum defined in (1.18) and ωd,c := exp(πis(d, c)). When (d, c) = 1, define d′c by

dd′c ≡ −1 (mod c) if c is odd and dd′c ≡ −1 (mod 2c) if c is even. Denote

g(h) :=
g

gcd(g, h)

for non-zero integers g and h. If u|c, define

B`,u,c(n,m) := (−1)`c+1
∑

d (mod c)∗

sin(π`u ) ωd,c

sin(
π`d′c
u ) exp(

3πic(u)d′c`
2

u )
e

(
md′c + nd

c

)
. (1.37)

When u - a and 1 ≤ ` < u(a), let 0 ≤ [a(u)`] < u(a) be defined by [a(u)`] ≡ a(u)` (mod u(a)). Define

D`,u,a(n,m) := (−1)a`+[a(u)`]
∑

b (mod a)∗

ωb,ae

(
mb′a + nb

a

)
. (1.38)

When u - a, define

δ`,u,a,r :=


−( 1

2 + r)
[a(u)`]

u(a)
+ 3

2

(
[a(u)`]

u(a)

)2

+ 1
24 , if 0 <

[a(u)`]

u(a)
< 1

6 ,

− 5[a(u)`]

2u(a)
+ 3

2

(
[a(u)`]

u(a)

)2

+ 25
24 − r +

r[a(u)`]

u(a)
, if 5

6 <
[a(u)`]

u(a)
< 1,

0 otherwise,

(1.39)

and when 0 <
[a(u)`]

u(a)
< 1

6 or 5
6 <

[a(u)`]

u(a)
< 1, define

m`,u,a,r :=
1

2u2
(a)

(
− 3

(
a(u)`− [a(u)`]

)2 − u(a)(1 + 2r)
(
a(u)`− [a(u)`]

) )
, if 0 <

[a(u)`]

u(a)
< 1

6 ,

1
2u2

(a)

(
− 3

(
a(u)`− [a(u)`]

)2
+ u(a)(2r − 5)

(
a(u)`− [a(u)`]

)
+ 2u2

(a)(r − 1)
)
, if 5

6 <
[a(u)`]

u(a)
< 1.

(1.40)

By [17, bottom of p. 3485], or directly by u(a)

∣∣∣ (a(u)`− [a(u)`]
)
, we can see m`,u,a,r ∈ Z always.

Bringmann proved:

Theorem 1.13 ([17, Theorem 1.1]). If 1 ≤ ` < u are coprime integers and u is odd, then for positive integers

n we have

A

(
`

u
;n

)
=

4
√

3 i√
24n− 1

∑
c: u|c≤

√
n

B`,u,c(−n, 0)√
c

sinh

(
π
√

24n− 1

6c

)

+
8
√

3 sin(π`u )
√

24n− 1

∑
r≥0

∑
a≤
√
n:

u-a,
δ`,u,a,r>0

D`,u,a(−n,m`,u,a,r)√
a

sinh

(
π
√

2δ`,u,a,r(24n− 1)

a
√

3

)
+Ou,ε(n

ε).
(1.41)

Note that the sum of r ≥ 0 in the second line is a finite sum because when v is fixed and r is large enough,

δ`,v,a,r will be always negative. Here we have modified the notation in Bringmann’s paper for convenience in

10



this thesis. Bringmann and Ono [21] claimed that the above sum, when summing up to infinity, should be

the exact formula for A( `u ;n).

When u = p is a prime number, the author proves that their statement is true. We also explain B`,p,c(−n, 0)

and D`,p,a(−n,m`,p,a,r) as components of vector-valued Kloosterman sums. Note that when u = p, we have

c(p) = c
p , a(p) = a and p(a) = p for p|c and p - a, hence the formulas from (1.37) to (1.40) become simpler.

Let µp : Γ0(p) → GLp−1(C) be defined as in (2.11), S∞∞(m,n, c, µp) and S0∞(Xr, n, a, µp; r) (for

r ≥ 0) be the vector-valued Kloosterman sum defined in (2.43) and (2.48), with S
(`)
∞∞(m,n, c, µp) and

S
(`)
0∞(X

([a`])
r , n, a, µp; r) as the scalar values at their `-th entry, respectively. Let xr be the only root in (0, 1

2 )

of the quadratic equation
3

2
x2 −

(
1

2
+ r

)
x+

1

24
= 0. (1.42)

In the case of prime p, we define [a`] by 0 ≤ [a`] < p and [a`] ≡ a` (mod p). Then we have the following

theorem.

Theorem 1.14 ([30, Theorem 1.1]). For every prime p ≥ 5, integer 1 ≤ ` ≤ p− 1 and positive integer n,

with the Kloosterman sums defined in (2.44) and (2.49), we have

A

(
`

p
;n

)
=

2πe(− 1
8 ) sin(π`p )

(24n− 1)
1
4

∑
c>0: p|c

S
(`)
∞∞(0, n, c, µp)

c
I 1

2

(
4π
√

24n− 1

24c

)

+
4π sin(π`p )

(n− 1
24 )

1
4

∑
r≥0
x−1
r <p

∑
a>0: p-a,

[a`]
p ∈(0,xr)

or
[a`]
p ∈(1−xr,1)

S
(`)
0∞ (d−pδ`,p,a,re , n, a, µp; r)

a · δ−
1
4

`,p,a,r

I 1
2

4π
√
δ`,p,a,r(n− 1

24 )

a

 ,
(1.43)

where dxe is the smallest integer ≥ x and bxc is the largest integer ≤ x.

Remark. This theorem also proves that Bringmann’s formula (1.41), when summing up c and a to infinity, is

the exact formula. Indeed, for all prime p ≥ 5, 1 ≤ ` ≤ p− 1, r ≥ 0, positive integers a, c such that p|c and

p - a, and when δ`,p,a,r > 0, we have the following relations:

i ·B`,p,c(−n, 0) = e(− 1
8 ) sin(π`p )S(`)

∞∞(0, n, c, µp), (1.44)

D`,p,a,r(−n,m`,p,a,r) = S
(`)
0∞ (d−pδ`,p,a,re , n, a, µp; r) , (1.45)

I 1
2
(z) = ( 2

πz )
1
2 sinh(z) (see [31, (10.39.1)]), and (1.46)

δ`,p,a,r > 0 if and only if [a`]
p ∈ (0, xr) ∪ (1− xr, 1). (1.47)

The last relation (1.47) is clear from the definition. Since A( `p ;n), δ`,p,a,r and I 1
2
(y) (for y ∈ R) are all real

(see (1.32) for A), we are safe to take the complex conjugation of (1.41).

We will prove (1.44) and (1.45) in §7.2.

By proving specific vanishing properties of the Kloosterman sums above, we are able to prove the

equidistribution of A( `p ;n) related to the rank of partitions. These properties also provide a new proof of

Ramanujan’s congruences (1.28) for the 5n+ 4 and 7n+ 5 cases as described by Dyson.

Theorem 1.15 ([30, Theorem 1.2]). For all integers n ≥ 0 and 1 ≤ ` ≤ p− 1 for p = 5, 7 (mentioned by p|c
below), we have the following vanishing conditions for the Kloosterman sums appearing in Theorem 1.14:
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(1) If 5|c, we have S
(`)
∞∞(0, 5n+ 4, c, µ5) = 0.

(2) If 7|c, c
7 · ` 6≡ 1 (mod 7), and c

7 · ` 6≡ −1 (mod 7), then S
(`)
∞∞(0, 7n+ 5, c, µ7; 0) = 0.

(3) If 7|c, 7 - a, a` ≡ ±1 (mod 7), and c = 7a, we have δ`,7,a,0 = (72 × 24)−1, d−7δ`,7,a,0e = 0, and

e(− 1
8 )
S

(`)
∞∞(0, 7n+ 5, c, µ7)

7
+

2√
7
S

(`)
0∞(0, 7n+ 5, a, µ7; 0) = 0.

Remark. The second sum for a on r ≥ 0 in (1.41) and (1.43) only appears when p ≥ 7. When p = 7, only

r = 0 is allowed and x0 = 1
6 , so [a`]

7 can only take values 1
7 or 6

7 , which requires a` ≡ ±1 (mod 7).

Corollary 1.16 ([30, Corollary 1.3]). For n ≥ 0 and all `, A( `5 ; 5n+ 4) = A( `7 ; 7n+ 5) = 0.

Combined with (1.32), the above corollary proves the equidistribution properties, i.e. Dyson’s conjectures

of the rank of partitions: 5N(`, 5; 5n+ 4) = p(5n+ 4) and 7N(`, 7; 7n+ 5) = p(7n+ 5) for all `, which imply

Ramanujan’s congruences p(5n+ 4) ≡ 0 (mod 5) and p(7n+ 5) ≡ 0 (mod 7).

1.5 Structure of the thesis

The main subject of this thesis is to organize the author’s proofs of Theorem 1.7, Theorem 1.9, Theorem 1.14

and Theorem 1.15 as his contribution during the doctoral years. We will introduce the basic definitions of

various automorphic forms in Chapter 2. Before we go into the ideas of Theorem 1.7, we first introduce Goldfeld

and Sarnak’s important work [16] in Chapter 3, including generalizations to vector-valued Kloosterman sums

as a help to the proof of Theorem 1.14.

Chapter 4 and Chapter 5 record the author’s proof of Theorem 1.7. Although the statement of Theorem 1.7

is the same in the cases m̃ñ < 0 or m̃ñ > 0, the methods we use are quite different, as can be seen by

comparing Theorem 4.8 and Theorem 5.1. Since Theorem 1.9 is a corollary of Theorem 1.7, Chapter 6

contains the proof of Theorem 1.9, as well as a literature review section in order to describe the milestones

on this route.

Chapter 7 is devoted to prove Theorem 1.14. To prove the vanishing properties of certain Kloosterman

sums in Theorem 1.15 and hence the equidistribution properties of A( `p ;n), Chapter 8 includes many tables

to enumerate all the conditions.
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Chapter 2

Automorphic forms and Kloosterman

sums

This chapter includes definitions and basic theorems in the theory of holomorphic modular forms, Maass

forms and harmonic Maass forms. We focus on the half-integral weight k ∈ Z + 1
2 unless specified.

2.1 Holomorphic modular forms

For any γ ∈ SL2(R) and z = x+ iy ∈ H, we have the basic properties

Im γz =
Im z

|cz + d|2
and γz =

a

c
− 1

c(cz + d)
. (2.1)

Fixing the argument in (−π, π], we now define the holomorphic modular forms.

Definition 2.1. Let k ∈ Z + 1
2 and ν be a weight k multiplier system on the congruence subgroup Γ. A

holomorphic function f : H→ C is called a holomorphic modular form of weight k for (Γ, ν) if it satisfies:

(1) f(γz) = ν(γ)(cz + d)kf(z) for all γ ∈ Γ;

(2) f is holomorphic at the cusps of Γ.

Moreover, if f also satisfies

(3) f vanishes at all the cusps of Γ,

then f is called a holomorphic cusp form of weight k for (Γ, ν).

We denote Mk(Γ, ν) (resp. Sk(Γ, ν)) as the space of holomorphic modular (resp. cusp) form of weight k

for (Γ, ν). Recall ñ = n− αν . For f ∈Mk(Γ, ν), f has a Fourier expansion at the cusp ∞ given by

f(z) =

∞∑
n=0

af (n)e(ñz). (2.2)
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We call af (n) the Fourier coefficient of f (at the cusp ∞). For any cusp a of Γ, let σa = (A B
C D ) be the scaling

matrix (1.10) of a. Then we can write the Fourier expansion of f at the cusp a as

(Cz +D)−kf(σaz) =

∞∑
n=0

af,a(n)e(naz). (2.3)

Therefore, f ∈ Sk(Γ, ν) if and only if af,a(0) = 0 for all cusps a of Γ. The spaces Mk(Γ, ν) and Sk(Γ, ν) are

both finite dimensional.

The hyperbolic measure dµ(z) on H is defined by

dµ(z) =
dxdy

y2
(2.4)

where dx and dy are the usual Lebesgue measures. One can check that for all γ ∈ GL2(R), we always have

dµ(γz) = dµ(z), i.e. dµ(z) is invariant under the action of GL2(R) on H. Therefore, for f, g ∈Mk(Γ, ν), the

following measure

ykf(z)g(z)dµ(z)

is invariant under the action of Γ on H (briefly called Γ-invariant). We define the Petersson inner product for

holomorphic forms as

〈f, g〉 :=

∫
Γ\H

ykf(z)g(z)
dxdy

y2
. (2.5)

When either f or g is in Sk(Γ, ν), the integral converges absolutely. The linear space Sk(Γ, ν) is then a finitely

dimensional Hilbert space with the Petersson inner product.

2.1.1 Holomorphic cusp forms of half-integral weight

Recall that we have already defined the two weight 1
2 multiplier systems: νθ (1.15) and νη (1.18). Let r(ψ)

denote the conductor of a Dirichlet character ψ. When the weight k = 1
2 , we have the Serre-Stark basis

theorem:

Theorem 2.2 ([32, Corollary 1 of Theorem A]). The space M 1
2
(Γ1(N), νθ) has a basis consisting of

θψ,t(z) :=
∑
n∈Z

ψ(n)qtn
2

where ψ is an even primitive Dirichlet character whose conductor r(ψ) satisfies 4r(ψ)2t|N .

For positive integers N, l and a weight k ∈ Z + 1
2 multiplier ν on Γ0(N), we know that ν is also a weight

k + 2l multiplier system on Γ0(N). For simplicity we denote K = k + 2l ∈ Z + 1
2 . Recall that SK(Γ0(N), ν)

is a finite-dimensional Hilbert space under the Petersson inner product. If we take an orthonormal basis

{Fj(·) : 1 ≤ j ≤ d := dimSK(Γ0(N), ν)} of SK(Γ0(N), ν) and write the Fourier expansion of Fj as

Fj(z) =

∞∑
n=1

aj(n)e(ñz),

14



then we have the Petersson trace formula

Γ(K − 1)

(4πñ)K−1

d∑
j=1

|aj(n)|2 = 1 + 2πi−K
∑
N |c

S(n, n, c, ν)

c
JK−1

(
4πñ

c

)
. (2.6)

The left hand side is independent from the choice of the basis.

2.2 Maass forms

In this section we recall some basic facts about Maass forms with general weight and multiplier, which can be

found in various references like [11], [12], [33]–[35]. Let Γ denote our congruence subgroup with ( 1 1
0 1 ) ∈ Γ

and H denote the upper-half complex plane. Recall the definition of j(γ, z) in (1.7) and the definition of the

weight k ∈ Z + 1
2 slash operator defined in (1.8). We call a function f : H→ C automorphic of weight k and

multiplier ν on Γ if

f |kγ = ν(γ)f for all γ ∈ Γ.

Let Ak(Γ, ν) denote the linear space consisting of all such functions and Lk(Γ, ν) ⊂ Ak(Γ, ν) denote the space

of square-integrable functions on Γ \H with respect to the measure

dµ(z) =
dxdy

y2

and the Petersson inner product

〈f, g〉 :=

∫
Γ\H

f(z)g(z)
dxdy

y2

for f, g ∈ Lk(Γ, ν). For k ∈ R, the Laplacian

∆k := y2

(
∂2

∂x2
+

∂2

∂y2

)
− iky ∂

∂x
(2.7)

can be expressed as

∆k = −Rk−2Lk −
k

2

(
1− k

2

)
(2.8)

= −Lk+2Rk +
k

2

(
1 +

k

2

)
(2.9)

where Rk is the Maass raising operator

Rk :=
k

2
+ 2iy

∂

∂z
=
k

2
+ iy

(
∂

∂x
− i ∂

∂y

)
(2.10)

and Lk is the Maass lowering operator

Lk :=
k

2
+ 2iy

∂

∂z̄
=
k

2
+ iy

(
∂

∂x
+ i

∂

∂y

)
. (2.11)

These operators raise and lower the weight of an automorphic form as

(Rkf)|k+2 γ = Rk(f |kγ), (Lkf)|k−2 γ = Lk(f |kγ), for f ∈ Ak(Γ, ν)
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and satisfy the commutative relations

Rk∆k = ∆k+2Rk, Lk∆k = ∆k−2Lk. (2.12)

Moreover, ∆k commutes with the weight k slash operator for all γ ∈ SL2(R).

We call a real analytic function f : H→ C an eigenfunction of ∆k with eigenvalue λ ∈ C if

∆kf + λf = 0.

From (2.12), it is clear that an eigenvalue λ for the weight k Laplacian is also an eigenvalue for weight k ± 2.

We call an eigenfunction f a Maass form if f ∈ Ak(Γ, ν) is smooth and satisfies the growth condition

(f |kγ)(x+ iy)� yσ + y1−σ

for all γ ∈ SL2(Z) and some σ depending on γ when y → +∞. Moreover, if a Maass form f satisfies∫ 1

0

(f |kσa)(x+ iy) e(αν,ax)dx = 0

for all cusps a of Γ, then f ∈ Lk(Γ, ν) and we call f a Maass cusp form. For details see [11, §2.3]

Let Bk(Γ, ν) ⊂ Lk(Γ, ν) denote the space of smooth functions f such that both f and ∆kf are bounded. One

can show that Bk(Γ, ν) is dense in Lk(Γ, ν) and ∆k is self-adjoint on Bk(Γ, ν). If we let λ0 := λ0(k) = |k|
2 (1− |k|2 ),

then for f ∈ Bk(Γ, ν),

〈f,−∆kf〉 ≥ λ0〈f, f〉,

i.e. −∆k is bounded from below. By the Friedrichs extension theorem, −∆k can be extended to a self-adjoint

operator on Lk(Γ, ν). The spectrum of ∆k consists of two parts: the continuous spectrum λ ∈ [ 1
4 ,∞) and a

discrete spectrum of finite multiplicity contained in [λ0,∞).

Non-zero eigenfunctions corresponding to eigenvalue λ0 come from holomorphic modular forms. To be

precise, let Mk(Γ, ν) denote the space of holomorphic modular forms of weight k and multiplier ν on Γ.

There is a one-to-one correspondence between all f ∈ Lk(Γ, ν) with eigenvalue λ0 and weight k holomorphic

modular forms F by

f(z) =

{
y
k
2 F (z) k ≥ 0, F ∈Mk(Γ, ν),

y−
k
2 F (z) k < 0, F ∈M−k(Γ, ν).

(2.13)

For the Fourier expansion
∑
n∈Z ay(n)e(ñx) of such f , we have{

k ≥ 0 ⇒ ay(n) = 0 for ñ < 0,

k < 0 ⇒ ay(n) = 0 for ñ > 0.
(2.14)

Let λ∆(Γ, ν, k) denote the first eigenvalue larger than λ0 in the discrete spectrum with respect to Γ,

weight k and multiplier ν. For weight 0, Selberg showed that λ∆(Γ(N),1, 0) ≥ 3
16 for all N [23] and Selberg’s

famous eigenvalue conjecture states that λ∆(Γ,1, 0) ≥ 1
4 for all Γ. We introduce the hypothesis Hθ as

Hθ : λ∆(Γ0(N),1, 0) ≥ 1
4 − θ

2 for all N. (2.15)

Selberg’s conjecture includes H0 and the best progress known today is H 7
64

by [25]. We denote λ∆(G, ν, k) as
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λ∆ when (G, ν, k) is clear from context.

Let L̃k(Γ, ν) ⊂ Lk(Γ, ν) denote the subspace spanned by eigenfunctions of ∆k. For each eigenvalue λ, we

write

λ = 1
4 + r2 = s(1− s), s = 1

2 + ir, r ∈ i(0, 1
4 ] ∪ [0,∞).

So r ∈ iR corresponds to λ < 1
4 and any such λ ∈ (λ0,

1
4 ) is called an exceptional eigenvalue. Set

r∆(N, ν, k) := i ·
√

1
4 − λ∆(Γ0(N), ν, k). (2.16)

Let L̃k(Γ, ν, r) ⊂ L̃k(Γ, ν) denote the subspace corresponding to the spectral parameter r. Complex

conjugation gives an isometry

L̃k(Γ, ν, r)←→ L̃−k(Γ, ν, r)

between normed spaces. For each v ∈ L̃k(n, ν, r), we have the Fourier expansion

v(z) = v(x+ iy) = c0(y) +
∑
ñ6=0

ρ(n)W k
2 sgn ñ, ir(4π|ñ|y)e(ñx)

where Wκ,µ is the Whittaker function as in [31, (13.14.3)] and

c0(y) =


0 αν 6= 0,

0 αν = 0 and r ≥ 0,

ρ(0)y
1
2 +ir αν = 0 and r ∈ i(0, 1

4 ].

Using the fact that Wκ,µ is a real function when κ is real and µ ∈ R ∪ iR [31, (13.4.4), (13.14.3), (13.14.31)],

if we denote the Fourier coefficient of fc := f̄ as ρc(n), then

ρc(n) =

{
ρ(1− n), αν > 0, n 6= 0

ρ(−n), αν = 0.
(2.17)

2.3 Harmonic Maass forms

The following construction can be found in [7], [21]. Let k ∈ 1
2 + Z, z = x+ iy for x, y ∈ R and y 6= 0, s ∈ C,

4|N is a positive integer. We define the weight k hyperbolic Laplacian (different from the former section) by

∆̃k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

Definition 2.3. With the notations above, let χ be a Dirichlet character modulo N . A weight k harmonic

Maass form on Γ0(N) with Nebentypus χ is any smooth function f : H→ C satisfying:

(1) For all γ ∈ Γ0(N), we have f(γz) = χ(d)νθ(γ)2k(cz + d)kf(z);

(2) ∆̃kf = 0;

(3) There exists a polynomial P(z) =
∑
n≤0 a

+(n)qn with coefficients in C such that

f(z)− P(z) = O(e−Cy)

for some C > 0. Analogous conditions are required for all cusps.
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Remark. We denote the space of such harmonic Maass forms by Hk(N,χν2k
θ ). The polynomial P is called the

principal part of f at the cusp ∞, with analogous definition at other cusps. When the transformation formula

in condition (1) is replaced by f(γz) = ν(γ)(cz + d)kf(z) for some multiplier system ν, we call f a weight k

harmonic Maass form for (Γ0(N), ν) and the principal parts of f are defined similarly for cusps of Γ0(N).

Denote the anti-linear differential operator ξk by

(ξkg)(z) := 2iyk
∂

∂z
(g(z)) = R−k(ykg(z))

where Rk is the Maass raising operator defined in (2.12). If we let G(z) = g(Bz) for some constant B, one

can check that (ξkG)(z) = B1−k(ξkg)(Bz). The following lemma is crucial in Chapters 6 and 7:

Lemma 2.4 ([36, Proposition 3.2],[21, Lemma 2.2]). The map

ξk : Hk(N,χν2k
θ )→ S2−k(N,χν−2k

θ )

is a surjective map. Moreover, if f ∈ Hk(N,χ) has Fourier expansion

f(z) =
∑
n≥n0

c+f (n)qn +
∑
n<0

c−f (n)Γ(1− k, 4π|n|y)qn for some n0 ∈ Z,

then

(ξkf)(z) = −(4π)1−k
∞∑
n=1

c−f (−n)n1−kqn.

Remark. We denote the holomorphic part of f by

fh(z) :=
∑
n≥n0

c+f (n)qn = P(z) +
∑
n>0

c+f (n)qn

and the non-holomorphic part of f by

fnh(z) :=
∑
n<0

c−f (n)Γ(1− k, 4π|n|y)qn,

where Γ(s, β) is the incomplete Gamma function defined by

Γ(s, β) =

∫ ∞
β

ts−1e−tdt, β > 0.

We also define a mock modular form as the holomorphic part of a harmonic Maass form.

We define the following functions to prepare our constructions of harmonic Maass forms later. Denote

Mβ,µ and Wβ,µ as the M - and W -Whittaker functions defined at [31, (13.14.2-3)]. For s ∈ C, x, y ∈ R, and

k ∈ Z + 1
2 , we define

Ms(y) := |y|− k2M k
2 sgn y, s− 1

2
(|y|) and ϕs,k(x+ iy) :=Ms(4πy)e(x). (2.18)

We also define

Ws(y) := |y|− k2W k
2 sgn y, s− 1

2
(|y|). (2.19)
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These functions have the following properties. For y > 0, by [31, (13.18.4)] we have

M1− k2
(−y) = y−

k
2M− k2 ,

1
2−

k
2
(y) = (1− k) (Γ(1− k)− Γ(1− k, y)) e

y
2 , (2.20)

and by [31, (13.18.2)], we have

W− k2 ,
1
2−

k
2
(y) = y

k
2 e

y
2 Γ(1− k, y) and W k

2 ,
1
2−

k
2
(y) = y

k
2 e−

y
2 . (2.21)

Moreover, ϕs,k(z) is an eigenfunction of ∆̃k with eigenvalue s(1− s) + k2−2k
4 . Specifically, when s = 1− k

2 ,

we have

∆̃kϕ1− k2 ,k
= 0. (2.22)

2.4 Vector-valued theory

2.4.1 Vector-valued Maass forms

Analogous to the scalar-valued case and [37] for vector-valued modular forms, here we define vector-valued

Maass forms on a congruence subgroup Γ of SL2(Z) where ( 1 1
0 1 ) ∈ Γ.

For a vector or a matrix M , let MT denote its transpose and MH denote its conjugate transpose

(Hermitian). We clarify the notations for the remaining part of this thesis here. Note that we are not using

the language of Weil representations.

Notation 2.5. The boldface letter, e.g. u or F(z), always denotes a vector or a vector-valued function of

some dimension D ≥ 2, respectively. For 1 ≤ ` ≤ D, let e` := (0, · · · , 0, 1, 0, · · · , 0)T denote the unit vector

which has 1 at its `-th entry and 0 at the others.

When the superscript ·(`) appears, u(`), u(`), F(`)(z) and F (`)(z) are defined by

u =

D∑
`=1

u(`) = (u(1), u(2), · · · , u(D))T, F(z) =

D∑
`=1

F(`)(z) =

D∑
`=1

F (`)(z)e`,

where u(`) = u(`)e` and F(`)(z) = F (`)(z)e`.

Given two D-dimensional complex vectors u,v ∈ CD, we define their inner product as vHu =
∑D
`=1 u

(`)v(`).

Let MD(C) denote the space of D ×D complex matrices and take M ∈ MD(C). Then the inner product of

Mv and u is

(Mv)Hu = vHMHu.

Recall that in the scalar-valued case, we fix the argument (−π, π] and define the automorphic factor

j(γ, z) in (1.7). Denote our vector-valued function on the upper-half complex plane H by

F(z) = (F (1)(z), F (2)(z), · · · , F (D)(z))T =

D∑
`=1

F (`)(z)e`

and define the weight k ∈ R slash operator |k by

(F|kγ)(z) :=
(

(F (1)|kγ)(z), · · · , (F (D)|kγ)(z)
)T

:= j(γ, z)−kF(γz).
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Definition 2.6. For a congruence subgroup Γ of SL2(Z) with ( 1 1
0 1 ) ∈ Γ, we say that ξ : Γ→ GLD(C) is a

D-dimensional multiplier system if it satisfies the following compatibility conditions:

(1) ξ(γ) is a unitary matrix for all γ ∈ Γ, i.e. ξ(γ)−1 = ξ(γ)H.

(2) ξ(−I) = e−πikID. Here I is the identity matrix in SL2(Z) and ID is the identity matrix in GLD(C).

(3) ξ(γ1γ2) = wk(γ1, γ2)ξ(γ1)ξ(γ2) for all γ1, γ2 ∈ Γ, where

wk(γ1, γ2) := j(γ2, z)
kj(γ1, γ2z)

kj(γ1γ2, z)
−k.

(4) For every cusp a of Γ, ξ
(
σa( 1 1

0 1 )σ−1
a

)
= diag{e(−α(1)

ξ,a), · · · , e(−α(D)
ξ,a )} for some α

(`)
ξ,a ∈ [0, 1). Here σa

is the scaling matrix of the cusp a of Γ.

Remark. The multiplier system ξ may not be a matrix representation of Γ because when k /∈ Z, wk(γ1, γ2)

may not always be 1, hence ξ is not multiplicative. In (4), if ξ is clear from context, we will simply denote

α
(`)
a = α

(`)
ξ,a.

For the weight k ∈ R and a D-dimensional complex function F such that each component F (`) is a smooth

function, if

∆kF(z) + λF(z) = 0

for some λ ∈ C, then we call F a D-dimensional eigenfunction of ∆k with eigenvalue λ. In this case, every

component F (`) of F is a eigenfunction of ∆k with eigenvalue λ.

Definition 2.7. A vector-valued Maass form F : H → CD of weight k ∈ R, eigenvalue λ ∈ C and D-

dimensional multiplier system ξ on Γ is a vector-valued function F = (F (1), · · · , F (D)) satisfying:

(1) Each F (`) is real-analytic on H;

(2) (F|kγ)(z) = ξ(γ)F(z) for all γ ∈ Γ.

(3) (∆k + λ)F(z) = 0.

(4) Each F (`) satisfies the growth condition

(F (`)|kγ)(z)� yσ + y1−σ for some σ > 0, as y →∞

for all γ ∈ SL2(Z).

In addition, if F also satisfies

(5) For every 1 ≤ ` ≤ D and every cusp a of Γ∫ 1

0

(F (`)|kσa)(x+ iy) e(α
(`)
a x)dx = 0,

then we call F a D-dimensional Maass cusp form.
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Suppose F is a weight k Maass form with multiplier system ξ on Γ. By Definition 2.7, each e(α
(`)
a )(F (`)|kσa)(z)

is a periodic function with period 1 on H. Then F (`) admits a Fourier expansion at the cusp a as

(F (`)|kσa)(x+ iy) =
∑
n∈Z

c
(`)
a (n, y)e

(
n

(`)
a x
)
, where n

(`)
a := n− α(`)

a .

As in the classical case, since F (`) is an eigenfunction of ∆k with eigenvalue λ = 1
4 + r2 for r ∈ [0,∞)∪ i[0,∞),

by solving the partial differential equation using the method of separation of variables, F (`) admits a Fourier

expansion of the form

F (`)(x+ iy) = ρ
(`)
F (0, y) +

∑
n∈Z
n(`)
∞ 6=0

ρ(`)
∞ (n)W k

2 sgnn
(`)
∞ , ir

(4π|n(`)
∞ |y)e

(
n(`)
∞ x
)
,

(2.23)

where ρ
(`)
F (0, y) = 0 if n 6= 0 or α

(`)
∞ 6= 0, and ρ

(`)
F (0, y) = c1y

1
2 +ir + c2y

1
2−ir for some constants c1, c2 ∈ C if

n = α
(`)
∞ = 0. Here Wκ,µ is the W -Whittaker function defined at [31, (13.14.3)] which satisfies Wκ,µ(α) ∈ R

and Wκ,µ = Wκ,−µ if κ, α ∈ R and µ ∈ R ∪ iR.

We call F : H→ CD a vector-valued automorphic form of weight k and D-dimensional multiplier system

ξ on Γ if

(F|kγ)(z) = ξ(γ)F(z) for all γ ∈ Γ. (2.24)

and denote the linear space of all such automorphic forms as Ak(Γ, ξ). For F,G ∈ Ak(Γ, ξ), we define

(formally) their Petersson inner product by

〈F,G〉 :=

∫
Γ\H

D∑
`=1

F (`)(z)G(`)(z)
dxdy

y2
=

∫
Γ\H

GH(z)F(z)
dxdy

y2
. (2.25)

This inner product is well-defined: for all γ ∈ Γ, since dxdy
y2 is invariant under γ, we have∫

Γ\H
GH(γz)F(γz)

dxdy

y2
=

∫
Γ\H

GH(z)ξ(γ)Hj(γ, z)kj(γ, z)kξ(γ)F(z)
dxdy

y2
= 〈F,G〉.

Let Lk(Γ, ξ) ⊂ Ak(Γ, ξ) denote the Hilbert space of square-integrable functions under the above inner product.

Then if F ∈ Lk(Γ, ξ), we have ∫
Γ\H
|F (`)(z)|2 dxdy

y2
<∞ for 1 ≤ ` ≤ D.

2.4.2 A representation on Γ0(p) twisted by νη

In this section we review the notations and results in [18]. Denote q = e2πiz for z ∈ H and the q-Pochhammer

symbol (a, q)n :=
∏n−1
j=0 (1− aqj−1). Define

M

(
`

p
; z

)
:=

1

(q, q)∞

∑
n∈Z

(−1)nqn+ `
p

1− qn+ `
p

q
3
2n(n+1) (2.26)
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and

N

(
`

p
; z

)
:=

1

(q, q)∞

1 +

∞∑
n=1

(−1)n(1 + qn)
(

2− 2 cos( 2π`
p )
)

1− 2 cos( 2π`
p )qn + q2n

q
1
2n(3n+1)

 . (2.27)

Further define

M
(
`

p
; z

)
:= 2q

3`
2p (1− `p )− 1

24M

(
`

p
; z

)
, N

(
`

p
; z

)
:= csc

(
π`

p

)
q−

1
24N

(
`

p
; z

)
, (2.28)

We also define the following functions: M(a, b, p, z) and N (a, b, p, z) as [18, (2.7), (2.8)]; non-holomorphic

functions T1( `p ; z), T2( `p ; z), T1(a, b, p; z) and T2(a, b, p; z) as [18, (3.1)-(3.4)];

ε2

(
`

p
; z

)
:=


2 exp

(
−3πiz(ac −

1
6 )2
)
, 0 < `

p <
1
6 ,

0, 1
6 <

`
p <

5
6 ,

2 exp
(
−3πiz(ac −

5
6 )2
)
, 5

6 <
`
p < 1

(2.29)

and ε2(a, b, p; z) as [18, before Theorem 2.4]; and

G1

(
`

p
; z

)
:= N

(
`

p
; z

)
− T1

(
`

p
; z

)
, (2.30)

G2

(
`

p
; z

)
:=M

(
`

p
; z

)
+ ε2

(
`

p
; z

)
− T2

(
`

p
; z

)
, (2.31)

G1 (a, b, p; z) := N (a, b, p; z)− T1 (a, b, p; z) , (2.32)

G2 (a, b, p; z) :=M (a, b, p; z) + ε2(a, b, p; z)− T2 (a, b, p; z) (2.33)

as [18, (3.5)-(3.8)]. Bringmann and Ono proved the following result in 2010.

Proposition 2.8 ([8, Theorem 3.4], [18, Corollary 3.2]). Suppose p ≥ 5 is a prime. Then{
G1

(
`

p
; z

)
,G2

(
`

p
; z

)
: 1 ≤ ` < p

}
∪ {G1 (a, b, p; z) ,G1 (a, b, p; z) : 0 ≤ a < p, 1 ≤ b < p}

is a vector valued Maass form of weight 1
2 for SL2(Z).

We clarify the notations to use in the remaining part of this thesis:

Notation 2.9. For integers A and n > 0, let [A]{n} denote the least non-negative residue of A (mod n), i.e.

0 ≤ [A]{n} < n defined by [A]{n} ≡ A (mod n). If the prime p ≥ 5 is clear from context, then we simply

denote [A]{p} as [A].

If (A,n) = 1, let A{n} denote the inverse of A modulo n, i.e. defined by AA{n} ≡ 1 (mod n). Let A′n be

defined by AA′n ≡ −1 (mod n) if n is odd and AA′n ≡ −1 (mod 2n) if n is even.

Garvan computed the following transformation laws on Γ0(p):

Proposition 2.10 ([18, Theorem 4.1]). Let p ≥ 5 be a prime. Then

G1

(
`

p
; γz

)
= µ(c, d, `, p)νη(γ)(cz + d)

1
2G1

(
[d`]

p
; z

)
for γ =

(
a b
c d

)
∈ Γ0(p),

where

µ(c, d, `, p) := exp

(
3πicd`2

p2

)
(−1)

c`
p (−1)b

d`
p c. (2.34)
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Note that in the original paper [18], the notation for the right hand side of (2.34) was µ(γ, `) where

γ =
(
a b
c d

)
. Since it only requires the value of c and d, we modify it to µ(c, d, `, p) here for convenience. We

use the above transformation formula to construct our (p− 1)-dimensional multiplier system µp.

Definition 2.11. Let p ≥ 5 be a prime. Define Mp : Γ0(p)→ Mp−1(C) by

Mp(γ) :=

p−1∑
`=1

µ(c, d, `, p)E`,[d`] and µp(γ) := νη(γ)Mp(γ), for γ =
(
a b
c d

)
∈ Γ0(p),

where Ej,k is the (p− 1)× (p− 1) matrix unit whose (j, k)-entry equals 1 and all the other entries equal 0.

This matrix has the following compatibility properties:

Proposition 2.12. Let p ≥ 5 be a prime and µp be defined as in Definition 2.11. Then for all γ, γ1, γ2 ∈ Γ0(p),

(1) det(µp(γ)) = ±νη(γ)p−1;

(2) µp(γ)−1 = µp(γ)H, i.e. µp(γ) is a unitary matrix;

(3) µp(−I) = e−
πi
2 Ip−1, where Ip−1 ∈ Mp−1(C) is the identity matrix;

(4) µp(γ1γ2) = ω 1
2
(γ1, γ2)µp(γ1)µp(γ2).

Proof. Since νη is a weight − 1
2 multiplier system on SL2(Z), it suffices to prove the corresponding properties

for Mp in weight 1. Denote γ =
(
a b
c d

)
. When (d, c) = 1, we have p - d and for 1 ≤ ` ≤ p− 1, d` runs over

all residue classes modulo p and vice versa. Thus, µp(γ) is an matrix with only one non-zero entry in every

row and every column. Let sgn(σ) ∈ {±1} be the signature of the permutation σ : `→ [d`] in (Z/pZ)×. By

(2.34), we have

detMp(γ) = sgn(σ)

p−1∏
`=1

µ(c, d, `, p)

= sgn(σ) exp

(
3πicd

p2
· (p− 1)p(2p− 1)

6

)
(−1)

c
p ·

(p−1)p
2

p−1∏
`=0

(−1)b
d`
p c

= sgn(σ)(−1)c(d+1)· p−1
2

p−1∏
`=0

(−1)d`+[d`]

= sgn(σ)(−1)(c+1)(d+1)· p−1
2 = sgn(σ),

where we have used the following facts for any x, y ∈ Z: (−1)xp = (−1)x;
⌊
x
p

⌋
≡ x+ [x] (mod 2); if (x, y) = 1

then (x+ 1)(y + 1) is even.

For (2), it suffices to show that Mp(γ) is a unitary matrix. Since Pσ :=
∑p−1
`=1 E`,[d`] is a permutation

matrix with P−1
σ = PTσ , we have

Mp(γ)−1 =
(

diag{µ(c, d, `, p) : 1 ≤ ` ≤ p− 1} · Pσ
)−1

= PTσ · diag{µ(c, d, `, p) : 1 ≤ ` ≤ p− 1} = Mp(γ)H.

For (3), we have µ(0,−1, `, p) = −1 for all ` and p. For (4), it suffices to show that Mp : Γ0(p)→ GLp−1(C)

is multiplicative, which was proved in [18, Theorem 4.1].
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Note that Proposition 2.12 has proved all the requirements in Definition 2.6 except (4). We verify the

conditions among the cusps ∞ and 0 of Γ0(p) here. Since µp and µp will appear together in the next section,

for simplicity we denote α
(`)
+a := α

(`)
µp,a and α

(`)
−a := α

(`)
µp,a

for the cusp a. Since

µp (( 1 1
0 1 )) = e(− 1

24 )Ip−1

is a diagonal matrix, we have

α
(`)
+∞ = 1

24 and n+∞ := n− 1
24 for all n ∈ Z. (2.35)

For µp we have α
(`)
−∞ = 23

24 and n−∞ := n− 23
24 . Moreover, we can take the scaling matrix (see (1.10)) of the

cusp 0 of Γ0(p) as σ0 =
(

0 −1/
√
p√

p 0

)
. Since σ0( 1 1

0 1 )σ−1
0 =

(
1 0
−p 1

)
and by (1.19)

νη
(
σ0( 1 1

0 1 )σ−1
0

)
= iνη

((−1 0
p −1

))
= i
(
−1
p

)
e
(
− 5p

24

)
= e

(
p
24

)
,

we have

µp
(
σ0( 1 1

0 1 )σ−1
0

)
= diag

{
e
(
− 3`2

2p −
p
24

)
(−1)` : 1 ≤ ` ≤ p− 1

}
.

Therefore, we define α
(`)
+0 ∈ [0, 1) such that

e
(
−α(`)

+0

)
= e

(
− 3`2

2p −
p
24

)
(−1)` and define n

(`)
+0 := n− α(`)

+0 for n ∈ Z. (2.36)

Note that α
(`)
+0 6= 0 because 1 ≤ ` ≤ p− 1 and (p, 24) = 1.

We will need the following properties in Chapter 7 where we construct certain linear combinations of

Maass-Poincaré series. For each integer r ≥ 0, we denote

xr as the only solution of 3
2x

2 − ( 1
2 + r)x+ 1

24 = 0 in (0, 1
2 ). (2.37)

The sequence {xr : r ≥ 0} has 1
6 = x0 > x1 > x2 > · · · > 0. Fix the prime p ≥ 5. For each integer r ≥ 0 and

positive integer a with (a, p) = 1, when xr >
1
p (otherwise the following set will be empty), we define the

condition set

B a, r C:=
{

1 ≤ ` ≤ p− 1 :
[a`]

p
∈ (0, xr) ∪ (1− xr, 1)

}
and B r C:=B1, rC . (2.38)

By (1.39), we observe that

δ`,p,a,r > 0 if and only if ` ∈B a, r C .

By (2.36), we find that α
(`)
+0 is the fractional part of

3`2

2p −
1+2r

2 `+ p
24 , when 0 < `

p < xr,

3p
2

(
1− `

p

)2

− (1+2r)p
2

(
1− `

p

)
+ p

24 , when 1− xr < `
p < 1.

(2.39)

By the definition of δ`,p,a,r in (1.39), we observe that α
(`)
+0 is the fractional part of pδ`,p,1,r when δ`,p,a,r > 0.
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Hence, for every integer r ≥ 0, we define a special vector Xr = (X
(1)
r , · · · , X(p−1)

r )T ∈ Zp−1 such that

X(`)
r =

{
d−pδ`,p,1,re , if δ`,p,1,r > 0, i.e. ` ∈B r C,

0, otherwise and never used.
(2.40)

Then we have X
([a`])
r = d−pδ`,p,a,re by (1.39) and

X
(`)
r,+0 := X(`)

r − α
(`)
+0 = −pδ`,p,1,r when δ`,p,1,r > 0, i.e. when ` ∈B r C,

which is the “correct order” to be matched for the Maass-Poincaré series in Chapter 7.

In general, for any vector m ∈ Zp−1, we denote m
(`)
+0 := m(`) − α(`)

+0. For simplicity we write 1−m :=∑∞
`=1(1−m(`))e` and denote m ≤ 0 if m(`) ≤ 0 for all `. For µp, we have α

(`)
−0 = 1− α(`)

+0 ∈ (0, 1) and define

m
(`)
−0 = m

(`)
−0 := m(`) − α(`)

−0. We have the property

(1−m)
(`)
±0 = −m(`)

∓0. (2.41)

We have already proved the following lemma.

Lemma 2.13. We have the following (p− 1)-dimensional multiplier systems on Γ0(p): µp of weight 1
2 and

µp of weight − 1
2 , in the sense of Definition 2.6.

In addition, by [18, Corollary 4.2], or directly by (2.34), one important property for µp is

µp(γ) = νη(γ)Ip−1 for γ ∈ Γ0(p2) ∩ Γ1(p). (2.42)

Suppose F ∈ A 1
2
(Γ0(p), µp) (see (2.24)), then for each `, we have F (`) ∈ A 1

2
(Γ0(p2) ∩ Γ1(p), νη). This

fact allows us to use the notations for (scalar-valued) Maass forms in §2.2 here for vector-valued Maass

forms with Petersson inner product defined in (2.25). For example, L 1
2
(Γ0(p), µp) is the space of weight

1
2 vector-valued square-integrable functions in A 1

2
(Γ0(p), µp). For any F ∈ L 1

2
(Γ0(p), µp), we have F (`) ∈

L 1
2
(Γ0(p2)∩Γ1(p), νη). It clearly follows that ∆k is a self-adjoint operator on L 1

2
(Γ0(p), µp). The spectrum of

∆ 1
2

on L 1
2
(Γ0(p), µp) is contained in the spectrum of ∆ 1

2
on L 1

2
(Γ0(p2) ∩ Γ1(p), νη), which includes a discrete

spectrum 3
16 = λ0 ≤ λ1 ≤ · · · of finite multiplicity and a continuous spectrum [ 1

4 ,∞). For each eigenvalue λ

of ∆ 1
2

on L 1
2
(Γ0(p), µp), we write λ = 1

4 + r2 for r ∈ i[0, 1
4 ) ∪ [0,∞) and call r the spectral parameter. We

still denote L̃ 1
2
(Γ0(p), µp, r) as the space of Maass eigenforms with spectral parameter r. With the property

L̃ 1
2
(Γ0(p), µp, r) ⊆

p−1⊕
`=1

L̃ 1
2
(Γ0(p2) ∩ Γ1(p), νη, r),

we have the following proposition.

Proposition 2.14. The space L̃ 1
2
(Γ0(p), µp, r) is finite dimensional.

Proof. For any V(z, r) =
(
V (1)(z, r), · · · , V (p−1)(z, r)

)
∈ L̃ 1

2
(Γ0(p), µp, r), we have V (1)(z, r) ∈ L̃ 1

2
(Γ0(p2) ∩

Γ1(p), νη, r), which is a finite-dimensional space. Moreover, for each 2 ≤ d ≤ p− 1, we have (d, p) = 1 and we

can pick γd = ( ∗ ∗p d ) ∈ Γ0(p). By the definition of µp, we have

V (d)(z, r) = µ(p, d, 1, p)νη(γd)V
(1)(z, r),
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i.e. the other components are determined by the first one. We conclude with

dimL 1
2
(Γ0(p), µp, r) ≤ dimL 1

2
(Γ0(p2) ∩ Γ1(p), νη, r).

We summarize these properties in the following lemma for future convenience.

Lemma 2.15. Suppose F : H→ Cp−1 satisfies

F(γz) = µp(γ)(cz + d)
1
2 F(z) for γ ∈ Γ0(p).

Then for each `, 1 ≤ ` ≤ p− 1, F (`) satisfies

F (`)(γz) = νη(γ)(cz + d)
1
2F (`)(z) for γ ∈ Γ0(p2) ∩ Γ1(p).

If we denote G(z) := F(24z) and hence G(`)(z) = F (`)(24z), we have

G(`)(γz) = νθ(γ)(cz + d)
1
2G(`)(z) for γ ∈ Γ1(576p2).

Moreover, the map z → 24z gives an injection

S 1
2

(
Γ0(p2) ∩ Γ1(p), νη

)
→ S 1

2
(Γ1(576p2), νθ)

f → g defined by g(z) := f(24z).

Proof. This is directly proved by our discussion above and the following fact:

w 1
2

((
a 24b

c/24 d

)
,
(√

24 0

0 1/
√

24

))
w 1

2

((√
24 0

0 1/
√

24

)
,
(
a b
c d

))
= 1

for γ =
(
a b
c d

)
∈ Γ0(24).

2.4.3 Vector-valued Kloosterman sums

In this subsection we define the vector-valued Kloosterman sums with (k, µ) = ( 1
2 , µp) or (− 1

2 , µp). First we

consider the cusp pair ∞∞. Let m,n, c ∈ Z with p|c. Define

S∞∞(m,n, c, µ) :=
∑

γ=
(
a b
c d

)
∈Γ∞\Γ0(p)/Γ∞

e

(
m±∞a+ n±∞d

c

)
µ(γ)−1

p−1∑
`=1

e`

sin(π`p )
. (2.43)

Since µ (( a ∗∗ d ))
−1

maps the entry at [a`] to `, we extract the `-th entry of the vector S∞∞(m,n, c, µ) as

S(`)
∞∞(m,n, c, µ) =

∑
d (mod c)∗

ad≡1 (mod c)

e

(
m±∞a+ n±∞d

c

)
µ(( a ∗c d ))−1e[a`]

sin(π[a`]
p )

=: S(`)
∞∞(m,n, c, ν)e`. (2.44)

For the cusp pair 0∞ there are more requirements for our application. For every integer r ≥ 0, recall

our definitions on xr in (2.37), α±0 in (2.36), and B r C in (2.38). For cusp pair (a, b), we define µab(γ) for
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γ ∈ σ−1
a Γ0(p)σb as in [38, (3.4)]. Hence, by σ∞ = I and wk(γ, I) = 1, µ0∞(γ) is defined for γ ∈ σ−1

0 Γ0(p)

and given by

µ0∞(γ) = µ(σ0γ)wk(σ−1
0 , σ0γ). (2.45)

For every integer r ≥ 0 and any vector m ∈ Zp−1, we define the Kloosterman sum

S0∞(m, n, a, µ; r) :=
∑

γ=

(
c√
p

d√
p

−a√p −b√p

)
γ∈Γ∞\σ−1

0 Γ0(p)/Γ∞

µ0∞(γ)−1
∑

`∈BrC

e

m(`)
±0

c√
p − n±∞b

√
p

−a√p

 e`.
(2.46)

Note that σ0γ =
(
a b
c d

)
∈ Γ0(p) for γ ∈ Γ∞ \ σ−1

0 Γ0(p)/Γ∞ in the summation above, hence µ0∞(γ)−1 maps

the entry at [a`] to `. Also note that only the values m(`) for ` ∈B a, r C are used because ` ∈B a, r C is

equivalent to [a`] ∈B r C. Therefore, by denoting γ =
(

c√
p

d√
p

−a√p −b√p

)
, the `-th entry of S0∞(m, n, a, µ; r) is

S
(`)
0∞(m([a`]), n, a, µ; r) =



∑
b (mod a)∗

0<c<pa, p|c
s.t. ad−bc=1

µ0∞(γ)−1e

m([a`])
±0

c√
p − n±∞b

√
p

−a√p

 e[a`], if ` ∈B a, r C,

0e`, otherwise

=: S
(`)
0∞(m([a`]), n, a, µp; r)e`.

(2.47)

In Theorem 1.14, we pick Xr defined in (2.40) for every integer r ≥ 0 and have

S0∞(Xr, n, a, µp; r) =
∑

γ=

(
c√
p

d√
p

−a√p −b√p

)
γ∈Γ∞\σ−1

0 Γ0(p)/Γ∞

µ0∞(γ)−1
∑

`∈BrC

e

X(`)
r,+0

c√
p − n+∞b

√
p

−a√p

 e`.. (2.48)

By denoting γ =
(

c√
p

d√
p

−a√p −b√p

)
, we extract the `-th entry of the vector S0∞(Xr, n, a, µp; r):

S
(`)
0∞(X([a`])

r , n, a, µp; r) =



∑
b (mod a)∗

0<c<pa, p|c
s.t. ad−bc=1

µ0∞(γ)−1e

X([a`])
r,+0

c√
p − n+∞b

√
p

−a√p

 e[a`], if ` ∈B a, r C,

0e`, otherwise

=: S
(`)
0∞(X([a`])

r , n, a, µp; r)e`.

(2.49)

2.4.4 Vector-valued holomorphic modular forms

Let ν be a weight k = ± 1
2 (one-dimensional) multiplier system on the congruence subgroup Γ. Recall Mk(Γ, ν)

as the space of weight k holomorphic modular forms and Sk(Γ, ν) as the space of weight k holomorphic cusp

forms. Every f ∈Mk(Γ, ν) satisfies the transformation property

f(γz) = ν(γ)(cz + d)kf(z) for γ =
(
a b
c d

)
∈ Γ.
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Similarly, if µ is a weight k = ± 1
2 D-dimensional multiplier system on Γ (Definition 2.6), then we denote the

space of weight k holomorphic modular forms on (Γ, µ) by Mk(Γ, µ) and the corresponding space of cusp

forms by Sk(Γ, µ).

From now on we take the prime p ≥ 5 and let (k, µ) = ( 1
2 , µp) or (− 1

2 , µp) on Γ0(p). By Lemma 2.15 and

using the fact that α±∞ 6= 0 in (2.35), we have

M 1
2
(Γ0(p), µp) = S 1

2
(Γ0(p), µp) ⊆

p−1⊕
`=1

S 1
2

(
Γ0(p2) ∩ Γ1(p), νη

)
. (2.50)

Similar as Proposition 2.14, we also have

dimM 1
2
(Γ0(p), µp) ≤ dimS 1

2

(
Γ0(p2) ∩ Γ1(p), νη

)
. (2.51)

Lemma 2.15 also shows that, for any f ∈ S 1
2

(
Γ0(p2) ∩ Γ1(p), νη

)
⊆ S 1

2

(
Γ1(p2), νη

)
, the map z → 24z gives

g ∈ S 1
2
(Γ1(576p2), νθ) for g(z) := f(24z). (2.52)

The Serre-Stark basis theorem (Theorem 2.2) implies the following lemma.

Lemma 2.16. Fix a prime p ≥ 5. Let f ∈M 1
2
(Γ1(576p2), νθ) have Fourier expansion as

f(z) =

∞∑
n=0

af (n)qn

where af (m) = 0 for all m 6≡ −1 (mod 24). Then if p 6≡ −1 (mod 24), we have f = 0; if p ≡ −1 (mod 24),

we have that f is a multiple of η(24pz).

Proof. By Theorem 2.2, if θψ,t ∈M 1
2
(Γ1(576p2), νθ), then whenever ψ(n) 6= 0, i.e. whenever (n, r(ψ)) = 1,

we have tn2 ≡ −1 (mod 24). Since t|144p2 and p2 ≡ 1 (mod 24) for primes p ≥ 5, we only have the possibility

if t = p ≡ −1 (mod 24). Then we have r(ψ)|12, hence r(ψ) = 1, 3 or 12.

Since ψ is primitive, r(ψ) = 1 means ψ(n) = 1 for all n, hence ψ(2) = 1 while p · 22 6≡ −1 (mod 24). When

r(ψ) = 3, the only primitive character is (−3
· ) which is odd, not to mention ψ(2) = −1 and p·22 6≡ −1 (mod 24).

When r(ψ) = 12, the only primitive character is ( 12
· ). Note that

η(24z) =

∞∑
n=1

(
12

n

)
qn

2

and the lemma follows.

Lemma 2.17. If F =
∑p−1
`=1 F

(`)(z)e` ∈M 1
2
(Γ0(p), µp) has Fourier expansion

F (`)(z) =

∞∑
n=1

a
(`)
F (n)qn−

1
24 for each 1 ≤ ` ≤ p− 1,

then F = 0.

Proof. Consider F(24z). By Lemma 2.16 and (2.52), if p 6≡ −1 (mod 24) we already have the desired result. If

p ≡ −1 (mod 24), we have F (`)(z) = c(`)η(pz) for some constant c(`) ∈ C and for each `. By [39, Corollary 3.5],

η(pz) ∈M 1
2
(Γ0(p), ( ·p )νη) because p ≡ −1 (mod 24).
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Now we take γ =
(

1 0
p 1

)
. By Proposition 2.10, we have

(pz + 1)−
1
2F (`)(γz) = µ(p, 1, `, p)νη(γ)F (`)(z),

while by F (`)(z) = c(`)η(pz), we have

(pz + 1)−
1
2F (`)(γz) = ( 1

p )νη(γ)F (`)(z).

However, µ(p, 1, `, p) = exp( 3πi`2

p )(−1)` cannot be ±1. Then the only possible case is c(`) = 0 for all

1 ≤ ` ≤ p− 1 and we have F = 0.
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Chapter 3

Sums of Kloosterman sums: general

bounds

In this section we first record the estimates by Goldfeld and Sarnak in [16]. Although their original paper

did not provide a uniform bound (in m, n and x), Pribitkin [34] derived a uniform bound with polynomial

growth in |m̃ñ|. Such uniform bound is weaker than Theorem 1.7, but it works for all weight k ∈ R multiplier

systems.

Nevertheless, a bound of polynomial growth in |m̃ñ| is enough to ensure the convergence of certain

Maass-Poincaré series. When we want to prove the exact formulas for ranks modulo p ≥ 5, the proof requires

uniform bounds for sums of vector-valued Kloosterman sums. As a generalization of [16], we prove such

uniform bounds in the vector-valued case, which helps us in the proof of Theorem 1.14 in Chapter 7.

3.1 The work of Goldfeld and Sarnak

In this section we briefly outline the work of Goldfeld and Sarnak [16] restricted to half-integral weight. Let Γ

be a congruence subgroup of SL2(Z) with ( 1 1
0 1 ) ∈ Γ. Let ν be a weight k ∈ Z + 1

2 multiplier system on Γ.

Recall the Kloosterman sums defined in (1.12). We define the Kloosterman-Selberg zeta function as

Zm,n,ν(s) :=
∑

c>0, s.t.

( ∗ ∗c ∗ )∈Γ

S(m,n, c, ν)

c2s
. (3.1)

We will omit the condition ( ∗ ∗c ∗ ) ∈ Γ for simplicity. When Γ = Γ0(N) for some positive integer N , we will

write the sum simply as N |c > 0. In this section, we keep the integers m,n > 0.

Goldfeld and Sarnak proved the following theorem.

Theorem 3.1 ([16, Theorem 1]). The function Zm,n,ν(s) is meromorphic in Re s > 1
2 with at most a finite

number of simple poles in ( 1
2 , 1), and satisfies the growth condition

Zm,n,ν(s)�Γ,m,n,ν,k
|s| 12
σ − 1

2

for s = σ + it, σ > 1
2 and t→∞.
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The following Mellin transform was from [16, (2.3)] and will be used frequently in the next section. For

α > 0 and Re(s+ 1
2 ± µ) > 0, we have

∫ ∞
0

e−2παyysWβ,µ(4παy)
dy

y
= (4πα)−s

Γ(s+ 1
2 + µ)Γ(s+ 1

2 − µ)

Γ(s− β + 1)
. (3.2)

For a positive integer m, we define the non-holomorphic Poincaré series as

Pm(z; s, ν) :=
∑

γ∈Γ∞\Γ

ν(γ)j(γ, z)−ke(m̃γz)(Im y)s. (3.3)

The above series converge absolutely and uniformly in any compact subset of Re s > 1. Moreover, Pm(z; s, ν) ∈
Lk(Γ, ν) (see §2.2). They also satisfy the recursion relation

Pm(z; s, ν) = −4πm̃(s− k
2 )Rs(1−s)(Pm(z; s+ 1, ν)), (3.4)

where Rλ := (∆k + λ)−1 is the resolvent of ∆k. As ∆k may have exceptional eigenvalues at λj <
1
4 , the

resolvent Rs(1−s) is holomorphic in Re s > 1
2 except possible points at sj such that sj(1− sj) = λj . Hence

by (3.4), Pm(z; s, ν) can be meromorphically continued to Re s > 1
2 except a finite number of simple poles at

such sj .

Let uj(z) ∈ Lk(Γ, ν) be the eigenfunction of ∆k with eigenvalue λj = sj(1 − sj). Then uj has Fourier

expansion

uj(z) = ρj(0, y) +
∑
n∈Z
ñ 6=0

ρj(n)W k
2 sgn ñ, sj− 1

2
(4π|ñ|y) e(ñx), (3.5)

where Wβ,µ(y) is the Whittaker function, ρj(0, y) = ρj(0)ysj + ρ′j(0)y1−sj if n = αν = 0, and ρj(0, y) = 0

otherwise. The residues of Pm(z; s, ν) at s = sj ∈ ( 1
2 , 1) can be computed as in [16, (2.5)]:

Res
s=sj

Pm(z; s, ν) = ρj(m)4πm̃1−sj Γ(2sj − 1)

Γ(sj − k
2 )
uj(z). (3.6)

Theorem 3.1 follows from the following two lemmas and∣∣∣∣∣ Γ(2s+ 1)

Γ(s+ k
2 )Γ(s− k

2 + 2)

∣∣∣∣∣ ∼ |t|−
1
2

√
2π

, for |t| → ∞.

Lemma 3.2 ([16, Lemma 2]). Let s = σ + it where 1
2 < σ ≤ 2 and |t| > 1. Then

∫
Γ\H
|Pm(z; s, ν)|2 dxdy

y

2

�Γ,ν,k
m2

(σ − 1
2 )2

.

Lemma 3.3 ([16, Lemma 3]). For m,n > 0, σ > 1
2 , we have∫

Γ\H
Pm(z; s, ν)Pn(z; s+ 2, ν)

dxdy

y2
= e(−k4 )4−s−1π−1ñ−2 Γ(2s+ 1)

Γ(s+ k
2 )Γ(s− k

2 + 2)
Zm,n,ν(s) +Rm,n,ν(s),

where Rm,n,ν(s) is holomorphic in σ > 1
2 and |Rm,n,ν(s)| �Γ,m,n,ν,k

1
σ− 1

2

in this region.
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Remark. Pribitkin proved a bound for Rm,n,ν(s) which is uniform in m and n in [34, Lemma 2].

With the help of Theorem 3.1, using an argument as in the proof of the prime number theorem (e.g. [40,

Chapter 18]), Goldfeld and Sarnak proved:

Theorem 3.4 ([16, Theorem 2]). Let

β = lim sup
c→∞

log |S(m,n, c, ν)|
log c

,

then ∑
c≤x

S(m,n, c, ν)

c
=

∑
sj∈( 1

2 ,1)

τj(m,n)
x2sj−1

2sj − 1
+OΓ,m,n,ν,k

(
x
β
3 +ε
)
,

where τj(m,n) are defined as in Theorem 1.7.

In the next section, we generalize this bound to the vector-valued Kloosterman sums, which helps us in

Chapter 7.

3.2 Sums of vector-valued Kloosterman sums

In this section, we follow [16] to prove an asymptotic formula for sums of certain vector-valued Kloosterman

sums. Let p ≥ 5 be a prime number. Let (k, µ) be either ( 1
2 , µp) or (− 1

2 , µp). For n ∈ Z and m ∈ Zp−1,

recall the notations α±∞, n±∞, α
(`)
±0 and m

(`)
±0 for 1 ≤ ` ≤ p− 1 introduced before Lemma 2.13 and recall the

Kloosterman sums defined in (2.43) and (2.46).

By Proposition 2.14, for every spectral parameter rj of λj = 1
4 + r2

j in the discrete spectrum, we can pick

an orthonormal (under the inner product (2.25)) basis of L̃ 1
2
(Γ0(p), µp, rj) denoted as OB(rj). For every

V(z; rj) ∈ OB(rj), we have V (`)(z; rj) ∈ L̃ 1
2
(Γ0(p2) ∩ Γ1(p), νη, rj) which has the Fourier expansion

V (`)(z; rj) = c(`)∞ (0, y) +
∑
n∈Z

n+∞ 6=0

ρ
(`)
j,∞(n)W k

2 sgnn+∞,irj
(4π|n+∞|y)e(n+∞x) (3.7)

as in (3.5). Since α+∞ 6= 0, we have c
(`)
∞ (0, y) = 0. The Fourier expansion of V(z; rj) at the cusp 0 is given by

(V (`)|kσ0)(z; rj) = c
(`)
0 (0, y) +

∑
n∈Z
n
(`)
+0 6=0

ρ
(`)
j,0(n)W 1

4 sgnn, irj

(
4π|n(`)

+0|y
)
e(n

(`)
+0x). (3.8)

Here c
(`)
0 (0, y) = 0 because α

(`)
+0 6= 0 for all 1 ≤ ` ≤ p− 1.

Specially, for the case of r0 = i
4 , by the proof of Proposition 2.14, any V(z; r0) ∈ L̃ 1

2
(Γ0(p), µp, r0) satisfies

V(`)(z; r0) ∈ L̃ 1
2
(Γ0(p2) ∩ Γ1(p), νη, r0). From (2.13), there exists a one-to-one correspondence between

V(z; r0) ∈ L̃ 1
2
(Γ0(p), µp, r0) and F ∈M 1

2
(Γ0(p2) ∩ Γ1(p), νη) by

V (1)(z; r0) = y
1
4F (z). (3.9)
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By (2.14), for the Fourier expansion of V(z; r0), since α
(`)
+∞ > 0 (2.35) and α

(`)
+0 > 0 (2.36), we have

V (`)(z; r0) =
∑

n+∞>0

ρ
(`)
0,∞(n)W 1

4 ,ir0
(4πn+∞y)e(n+∞x),

(V (`)|kσ0)(z; r0) =
∑
n
(`)
+0>0

ρ
(`)
0,0(n)W 1

4 , ir0

(
4πn

(`)
+0y

)
e(n

(`)
+0x),

(3.10)

i.e. ρ
(`)
0,∞(n) = ρ

(`)
0,0(n) = 0 if n ≤ 0.

We will prove the following theorem in this section.

Theorem 3.5. Fix an integer r ≥ 0, a prime p ≥ 5, and let 1 ≤ L, ` ≤ p − 1. For m ∈ Z with m ≤ 0,

m ∈ Zp−1 with m ≤ 0, and M = max
`∈BrC

{|m(`)
+0|}, we have m+∞ < 0 (see (2.35)), m

(`)
+0 < 0 for all ` (see

(2.36)), and the following results:

∑
c≤x: p|c

S
(`)
∞∞(m,n, c, µp)

c
=

∑
1
2<sj≤

3
4

τ
(`)
j,∞(m,n)

x2sj−1

2sj − 1
+Op,ε

(
|mn|3x 1

3 +ε
)
, (3.11)

∑
a≤x:

p-a, [a`]=L

S
(`)
0∞(m(L), n, a, µp; r)

a
√
p

=
∑

1
2<sj≤

3
4

τ
(`)
j,0,(L)(m

(L), n)
x2sj−1

2sj − 1
+Op,ε

(
|m(L)

+0 n|3x
1
3 +ε
)
, (3.12)

∑
a≤x:

p-a, [a`]∈BrC

S
(`)
0∞(m([a`]), n, a, µp; r)

a
√
p

=
∑

1
2<sj≤

3
4

τ
(`)
j,0 (m, n)

x2sj−1

2sj − 1
+Op,ε

(
|Mn|3x 1

3 +ε
)
, (3.13)

where

τ
(`)
j,∞(m,n) = e( 1

8 )

p−1∑
L=1

ρ
(L)
j,∞(m)

sin(πLp )

 ρ
(`)
j,∞(n)

sin(π`p )
·

Γ(sj + 1
4 sgnn+∞)Γ(2sj − 1)

π2sj−1|4m+∞n+∞|sj−1Γ(sj − 1
4 )
,

τ
(`)
j,0,(L)(m

(L), n) = e(− 1
8 )ρ

(L)
j,0 (m(L)) ·

ρ
(`)
j,∞(n)

sin(π`p )
·

Γ(sj + 1
4 sgnn+∞)Γ(2sj − 1)

π2sj−1|4m(L)
+0 n+∞|sj−1Γ(sj − 1

4 )
,

and τ
(`)
j,0 (m, n) =

∑
L∈BrC

τ
(`)
j,0,(L)(m

(L), n). Here all the sums on sj run over the exceptional eigenvalues

λj = sj(1 − sj) ∈ [ 3
16 ,

1
4 ) of ∆ 1

2
on L 1

2
(Γ0(p), µp). The coefficients ρ

(`)
j,∞(n) and ρ

(`)
j,0(m(`)) are the Fourier

coefficients of an eigenform V(z; rj) of ∆ 1
2

in a orthonormal basis OB(rj) of L̃ 1
2
(Γ0(p), µp, rj), defined in

(3.7) and (3.8). The summation term corresponding to a single sj should be understood as the sum over all

V(z; rj) ∈ OB(rj).

Remark. Here we have an important clarification of our notation. The notation r always means the integer

r ≥ 0 which appears in the Kloosterman sum S
(`)
0∞(m(L), n, a, µp; r), in xr defined in (2.37), and in B a, r C

defined in (2.38). The notation rj , with subscript j ≥ 0, is the spectral parameter of the eigenvalue λj = 1
4 +r2

j

of ∆ 1
2

on (Γ0(p), µp).

Corollary 3.6. With the same setting as Theorem 3.5, there exists a δ > 0 such that for all 1 ≤ L, ` ≤ p− 1,
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we have

∑
c≤x: p|c

S
(`)
∞∞(m,n, c, µp)

c
�p |m+∞n+∞|3x

1
2−δ

∑
a≤x:

p-a, [a`]=L

S
(`)
0∞(m(L), n, a, µp; r)

a
√
p

�p |m(L)
+0 n+∞|3x

1
2−δ,

∑
a≤x:

p-a, [a`]∈BrC

S
(`)
0∞(m([a`]), n, a, µp; r)

a
√
p

�p |Mn+∞|3x
1
2−δ.

Proof of Corollary 3.6. Granted Theorem 3.5, it suffices to determine the growth rate of ρ
(`)
j,0(n) and ρ

(`)
j,0(m(`)).

By the discussion in Proposition 2.14, these coefficients are also the Fourier coefficients of an eigenform of

∆ 1
2

in a orthonormal basis of L̃ 1
2
(Γ0(p2) ∩ Γ1(p), νη, rj). Then we can get the growth rate from the spaces of

scalar valued Maass eigenforms of ∆ 1
2
.

For 3
16 = λ0 = s0(1− s0), i.e. s0 = 3

4 , we know that L̃ 1
2
(Γ0(p2)∩Γ1(p), νη, rj) corresponds to holomorphic

modular forms M 1
2
(Γ0(p2) ∩ Γ1(p), νη) as in (3.9). Since we have m+∞ < 0 and m

(`)
+0 < 0, by (3.9), we get

ρ
(`)
0,∞(m) = 0 and ρ

(`)
0,0(m(`)) = 0. Thus, the term x2s0−1 = x

1
2 for s0 = 3

4 is not contained in each sum.

Since the exceptional eigenvalues of ∆ 1
2

on L 1
2
(Γ0(p2) ∩ Γ1(p), νη, rj) are discrete, there exists δ > 0 such

that 2sj − 1 < 1
2 − δ for all sj ∈ ( 1

2 ,
3
4 ). For these j, both ρ

(`)
j,∞(n) and ρ

(`)
j,0(m(`)) are Op(1). The corollary

follows.

We generalize the method in [16] (to the vector-valued setting) to prove Theorem 3.5. Define the

Kloosterman-Selberg zeta functions as

Z
(`)
∞∞
m,n,+

(s) :=
∑

c≤x: p|c

S
(`)
∞∞(m,n, c, µp)

c2s
, Z

(`)
0∞;r

m(L),n,+

(s) :=
∑

a≤x: p-a,
[a`]=L

S
(`)
0∞(m(L), n, a, µp; r)

(a
√
p)2s

. (3.14)

and Z
(`)
0∞;r
m,n,+

(s) :=
∑

L∈BrC
Z

(`)
0∞;r

m(L),n,+

(s). Recall the remark following Theorem 3.5 for the integer r ≥ 0 involved

in the zeta functions above.

We address the proof of (3.11) in the next subsection. The proof of (3.13) is in the subsequent subsection.

3.2.1 The cusp ∞

Recall the notation (k, µ) = ( 1
2 , µp) or (− 1

2 , µp). For m > 0, we define the weight k non-holomorphic

vector-valued Poincaré series as

U(z; s, k,m, µ) :=

p−1∑
`=1

∑
γ∈Γ∞\Γ0(p)

µ(γ)−1j(γ, z)−k
ys

|cz + d|2s
e(m±∞γz)e`

sin(π`p )
(3.15)

where γ =
(
a b
c d

)
and the ± in m±∞ is chosen depending on the sign of k. We also denote

U(`)(z; s, k,m, µ) :=
∑

γ∈Γ∞\Γ0(p)

µ(γ)−1j(γ, z)−k
ys

|cz + d|2s
e(m±∞γz)

sin(π`p )
e` (3.16)
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as the part of the Poincaré series generated by e`.

Remark. Note the difference between U(`)(z; s, k,m, µ) and U(`)(z; s, k,m, µ): U(`) is defined only by the

terms associated to e`, while U(`) is the `-th entry of the vector U. All the components of U(`) for

L : 1 ≤ L 6= ` ≤ p− 1 are zero, but this is not true for U(`).

The Poincaré series U(z; s, k,m, µ) and U(`)(z; s, k,m, µ) converge absolutely and uniformly in any

compact subset of Re s > 1 and are in Lk(Γ0(p), µ). To show the transformation law, e.g.

U(γ1z; s, k,m, µ) = µ(γ1)j(γ1, z)
kU(z; s, k,m, µ) for γ1 ∈ Γ0(p),

it suffices to show that for γ1, γ2 ∈ Γ0(p), we have

µ(γ2γ
−1
1 )−1j(γ2γ

−1
1 , γ1z)

−k =
(
µ(γ2)µ(γ−1

1 )
)−1

wk(γ2, γ
−1
1 )j(γ2γ

−1
1 , γ1z)

−k

= µ(γ1)µ(γ2)−1j(γ2, z)
−kj(γ−1

1 , γ1z)
−kj(γ2γ

−1
1 , γ1z)

kj(γ2γ
−1
1 , γ1z)

−k

= µ(γ1)j(γ1, z)
k · µ(γ2)−1j(γ2, z)

−k,

(3.17)

where we have used this trick: since wk(γ, γ′) does not depend on z ∈ H, we have

wk(γ, γ′) = j(γ′, γ′′z)kj(γ, γ′γ′′z)kj(γγ′, γ′′z)−k for all γ′′ ∈ SL2(Z), (3.18)

as well as the properties µ(γ−1
1 ) = µ(γ1)−1 and j(γ−1

1 , γ1z)
kj(γ1, z)

k = 1.

For Re s > 1, we can compute the Fourier expansion of U(z; s, k,m, µ) in the same way as the scalar-valued

case. The contribution from c = 0 equals

p−1∑
`=1

ys

sin(π`p )
e(m±∞z)e`.

When c > 0, the contribution from a single c equals

p−1∑
`=1

∑
d (mod c)∗

ad≡1 (mod c)

∑
t∈Z

µ(
(
a b+ta
c d+tc

)
)−1

(
cz + d+ tc

|cz + d+ tc|

)−k
ys

|cz + d+ tc|2s
e
(
m±∞

az+b+ta
cz+d+tc

)
sin(π`p )

e`

=

p−1∑
`=1

∑
d (mod c)∗

ad≡1 (mod c)

µ(( a ∗c d ))−1

c2s
e
(m±∞a

c

)∑
t∈Z

(
z + d

c + t

|z + d
c + t|

)−k
e(tα±∞)ys

|z + d
c + t|2s

e
(
− m±∞
c2(z+ d

c+t)

)
e`

sin(π`p )
,

where we have used az+b
cz+d = a

c −
1

c(cz+d) , Definition 2.11, and the property (1.9) for νη. If we denote

f±(z) :=
∑
t∈Z

(
z + t

|z + t|

)−k
e(tα±∞) ys

|z + t|2s
e

(
− m±∞
c2(z + t)

)
,

then f±(z)e(α±∞x) have period 1 and we get the following Fourier expansion by Poisson summation:

f±(z) =
∑

n±∞>0

B(c,m±∞, t±∞, y, s, k)

sin(π`c )
e(n±∞x) and f±

(
z +

d

c

)
= e

(
n±∞d

c

)
f±(z),
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where (with the substitution x = yu)

B(c,m±∞, t±∞, y, s, k) := y

∫
R

(
u+ i

|u+ i|

)−k
e

(
−m±∞
c2y(u+ i)

− t±∞yu
)

du

y2s(u2 + 1)s
. (3.19)

Therefore, the Fourier expansion of U(z; s, k,m, µ) at the cusp ∞ is

U(z; s, k,m, µ) =

p−1∑
`=1

yse(m±∞z)e`

sin(π`p )

+ ys
∑
t∈Z

∑
p|c>0

S∞∞(m, t, c, µ)

c2s
B(c,m±∞, t±∞, y, s, k)e(t±∞x),

(3.20)

where S∞∞(m,n, c, µ) is defined in (2.43).

Moreover, for Re s > 1 and λ = s(1− s), we still have the recursion relation

U(z; s, k,m, µ) = −4πm±∞(s− k
2 )Rλ (U(z; s+ 1, k,m, µ)) , (3.21)

U(`)(z; s, k,m, µ) = −4πm±∞(s− k
2 )Rλ

(
U(`)(z; s+ 1, k,m, µ)

)
, (3.22)

where Rλ = (∆k+λ)−1 is the resolvent of ∆k. Since 1
2 < Re s < 1 implies λ < 1

4 , we know that U(z; s, k,m, µ)

and every U(`)(z; s, k,m, µ) can be meromorphically continued to the half plane Re s > 1
2 with a finite number

of simple poles at sj for 1
2 < sj <

3
4 .

Recall that we choose m+∞ < 0 in the condition for Theorem 3.5, hence m ≤ 0 and (1 − m)−∞ =

−m+∞ > 0. Also recall that OB(rj) is a orthonormal basis of L̃ 1
2
(Γ0(p), µp, rj) and let V(z; rj) ∈ OB(rj)

(see (3.7)). The residue of U(·; s,− 1
2 , 1−m,µp) at s = sj is then given by∑

V∈OB(rj)

Res
s=sj

〈
U(·; s,− 1

2 , 1−m,µp),V(·; rj)
〉

V(z; rj).

We are going to compute the inner product (defined by (2.25)) by applying the Mellin transform (3.2). Note

that W k
2 sgnm+∞,irj

(4π|m+∞|y) ∈ R and sj = 1
2 + irj for rj ∈ i(0, 1

4 ). We get

〈
U(·; s,− 1

2 , 1−m,µp),V(·; rj)
〉

=

∫
Γ0(p)\H

V(z; rj)
H

p−1∑
`=1

∑
γ∈Γ∞\Γ0(p)

µp(γ)−1j(γ, z)
1
2 (Im γz)s

e((1−m)−∞γz)

sin(π`p )
e`

 dxdy

y2

=

p−1∑
`=1

∫
Γ∞\H

V(z; rj)
Hyse(m+∞x)e2πm+∞y

e`

sin(π`p )

dxdy

y2

=

p−1∑
`=1

ρ
(`)
∞ (m)

sin(π`p )

∫ ∞
0

e−2π|m+∞|yW− 1
4 ,irj

(4π|m+∞|y)ys−1 dy

y

= (4π|m+∞|)1−sΓ(s− sj)Γ(s+ sj − 1)

Γ(s+ 1
4 )

p−1∑
`=1

ρ
(`)
∞ (m)

sin(π`p )
.
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The residue of U(·; s,− 1
2 , 1−m,µp) at s = sj is then

∑
V∈OB(rj)

Res
s=sj

〈
U(·; s,− 1

2 , 1−m,µp),V(·; rj)
〉

V(z; rj)

=
∑

V∈OB(rj)

(4π|m+∞|)1−sj Γ(2sj − 1)

Γ(sj + 1
4 )

p−1∑
`=1

ρ
(`)
∞ (m)

sin(π`p )
V(z; rj).

(3.23)

The following lemma still holds as [16, Lemma 1] because the proofs are essentially the same except for

the difference of scalar-valued Petersson inner product and the vector-valued one in (2.25). We omit the

proof here.

Lemma 3.7. Let s = σ + it, (k, µ) = (1
2 , µp) or (− 1

2 , µp) and m > 0. For 1
2 < σ ≤ 2 and |t| > 1 we have

〈U(·; s, k,m, µ),U(·; s, k,m, µ)〉 �p
m2

(σ − 1
2 )2

,

〈
U(`)(·; s, k,m, µ),U(`)(·; s, k,m, µ)

〉
�p

m2

(σ − 1
2 )2

.

The following useful equation follows from [41, (3.384.9)]: for y > 0, β 6= 0, k = ± 1
2 , Re s > 1

2 , we have

∫
R

(x+ i)−k

(x2 + 1)s−
k
2

e−2πiβxydx =
e(−k4 )π(π|β|y)s−1

Γ(s+ k
2 sgnβ)

W k
2 sgn β, 1

2−s
(4π|β|y). (3.24)

In the next lemma we compute the inner product of two Poincaré series. Recall the definition in (3.14).

Lemma 3.8. Suppose that m+∞ < 0 and let 1 ≤ ` ≤ p− 1. Then

Z
(`)
∞∞
m,n,+

(s) is meromorphic in Re s > 1
2

with at most a finite number of simple poles in ( 1
2 , 1). Moreover, when Re s > 1

2 , for n+∞ > 0 we have〈
U(·; s,− 1

2 , 1−m,µp),U(`)(·; s+ 2, 1
2 , n, µp)

〉
=

e(− 1
8 )

4s+1πn2
+∞
· Γ(2s+ 1)

Γ(s+ 1
4 )Γ(s+ 7

4 )
Z

(`)
∞∞
m,n,+

(s) +Op

(
|m+∞n+∞|
σ − 1

2

)
,

and for n+∞ < 0 we have〈
U(·; s,− 1

2 , 1−m,µp), U(`)(·; s+ 2,− 1
2 , 1− n, µp)

〉
=

e(− 1
8 )

4s+1π|n+∞|2
· Γ(2s+ 1)

Γ(s− 1
4 )Γ(s+ 9

4 )
Z

(`)
∞∞
m,n,+

(s) +Op

(
|m+∞n+∞|
σ − 1

2

)
.

Proof. We compute similarly as [16, Lemma 2] with the following properties: µp(γ) is unitary, µp(γ
−1) =

µp(γ)−1, and j(γ−1, z)
1
2 j(γ, γ−1z)

1
2 = 1. For the first equality in the following computation, we write U to
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denote the whole first term in the inner product. Suppose that Re s2 > Re s1 >
1
2 . When n+∞ > 0, we have〈

U(·; s1,− 1
2 , 1−m,µp),U(`)(·; s2,

1
2 , n, µp)

〉
=

∫
Γ0(p)\H

 ∑
γ∈Γ∞\Γ0(p)

µp(γ)−1j(γ, z)−
1
2 (Im γz)s2

e(n+∞γz)

sin(π`p )
e`

H

U
dxdy

y2

=

∫
Γ0(p)\H

∑
γ∈Γ∞\Γ0(p)

j(γ, γ−1z)
1
2 ys2e(−n+∞x)

e−2πn+∞y

sin(π`p )
eT` µp(γ)

· µp(γ−1)j(γ−1, z)
1
2 U(z; s1,− 1

2 , 1−m,µp)
dxdy

y2

=

∫
Γ∞\H

ys2e(−n+∞x)
e−2πn+∞y

sin(π`p )
eT` U(z; s1,− 1

2 , 1−m,µp)
dxdy

y2
.

Then we use the Fourier expansion (3.20) with (2.44) to continue:

=
∑
p|c>0

S
(`)
∞∞(m,n, c, µp)

c2s1

∫ ∞
0

ys2−s1e−2πn+∞yB(c, (1−m)−∞, (1− n)−∞, y, s1,− 1
2 )
dy

y

= Z
(`)
∞∞
m,n,+

(s1)

∫ ∞
0

∫
R

ys2−s1e−2πn+∞y

(u2 + 1)s1

(
u+ i

|u+ i|

)− 1
2

e(−n+∞uy)
dxdy

y
+R

(`)
∞∞
m,n,+

(s1, s2)

=
e(− 1

8 )

4s+1πn2
+∞
· Γ(2s1 + 1)

Γ(s1 + 1
4 )Γ(s1 + 7

4 )
Z

(`)
∞∞
m,n,+

(s1) +R
(`)
∞∞
m,n,+

(s1, s2),

where

R
(`)
∞∞
m,n,+

(s1, s2) = Z
(`)
∞∞
m,n,+

(s1)

∫ ∞
0

∫
R

ys2−s1e−2πn+∞y

(u2 + 1)s1

(
u+ i

|u+ i|

)− 1
2

· e(−n+∞uy)

(
e

(
−m+∞(u+ i)

c2y(u2 + 1)

)
− 1

)
dxdy

y

= Z
(`)
∞∞
m,n,+

(s1)O

(
|m+∞n+∞|
c2(σ1 − 1

2 )

)
= O

(
|m+∞n+∞|
σ1 − 1

2

)
,

which is holomorphic when σ1 >
1
2 . The lemma follows by setting s2 = s1 + 2.

Similarly, when n+∞ < 0 we have〈
U(·; s1,− 1

2 , 1−m,µp), U(`)(·; s2,− 1
2 , 1− n, µp)

〉
=

∫
Γ∞\H

ys2e(−n+∞x)
e2πn+∞y

sin(π`p )
eT` U(z; s1,− 1

2 , 1−m,µp)
dxdy

y2

=
e(− 1

8 )π1+s1−s2

4s2−1|n+∞|s2−s1
· Γ(s2 − s1)Γ(s2 + s1 − 1)

Γ(s1 − 1
4 )Γ(s2 + 1

4 )
Z

(`)
∞∞
m,n,+

(s1) +R
(`)
∞∞
m,n,+

(s1, s2)
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where

R
(`)
∞∞
m,n,µp

(s1, s2) =
∑
p|c>0

S
(`)
∞∞(m,n, c, µp)

c2s1

∫ ∞
0

∫
R

ys2−s1e2πn+∞y

(u2 + 1)s1

(
u+ i

|u+ i|

)− 1
2

· e(−n+∞uy)

(
e

(
−m+∞(u+ i)

c2y(u2 + 1)

)
− 1

)
dxdy

y

=
∑
p|c>0

S
(`)
∞∞(m,n, c, µp)

c2s1
O

(
|m+∞n+∞|
c2(σ1 − 1

2 )

)
= O

(
|m+∞n+∞|
σ1 − 1

2

)
.

The lemma follows by setting s2 = s1 + 2.

Combining Lemma 3.7 and Lemma 3.8, we have the following proposition.

Proposition 3.9. For m+∞ < 0, s = σ + it, σ > 1
2 and |t| → ∞, we have

Z
(`)
∞∞
m,n,+

(s)�p
|m+∞n+∞|3|s|

1
2

σ − 1
2

.

Now we can prove the first case of Theorem 3.5.

Proof of (3.11) in Theorem 3.5. Denote s = σ+it. Fix any ε > 0, by Proposition 3.9, Z
(`)
∞∞
m,n,+

(s)�p,ε ζ(1+ε)

for σ = 1 + ε, and the Phragmén-Lindelöf principle, we have

Z
(`)
∞∞
m,n,+

( 1+s
2 )�p,ε |m+∞n+∞|3|t|

1
2−

σ
2 +ε for 0 < ε ≤ σ ≤ 1 + ε. (3.25)

Then following the argument of [16, §3], by the proof of the prime number theorem as in [40, Chapter 18], we

have ∑
p|c≤x

S
(`)
∞∞(m,n, c, µp)

c
=

1

2πi

∫ 1+iT

1−iT
Z

(`)
∞∞
m,n,+

( 1+s
2 )

xs

s
ds+O

(
|m+∞n+∞|3

x1+ε

T

)
.

By Lemma 3.8, the function Z
(`)
∞∞
m,n,+

( 1+s
2 ) has at most a finite number of simple poles at 2sj − 1 ∈ (0, 1)

(note that we are using 1+s
2 rather than s), where λj = sj(1− sj) < 1

4 are the discrete eigenvalues of ∆ 1
2

on

L 1
2
(Γ0(p), µp). Shifting the line of integration above to Re s = ε such that 2sj − 1 > ε for all λj <

1
4 , with

the help of (3.25) we obtain

∑
p|c≤x

S
(`)
∞∞(m,n, c, µp)

c
=

∑
1
2<sj<

3
4

Res
s=2sj−1

Z
(`)
∞∞
m,n,+

( 1+s
2 )

x2sj−1

2sj − 1
+O(|m+∞n+∞|3x

1
3 +ε),

where we have chosen T = x
2
3 .

For the residue, by Lemma 3.8, it suffices to compute the residue of the two inner products in that lemma.

Let OB(rj) be an orthonormal basis of L̃ 1
2
(Γ0(p), µp) and let V(z; rj) ∈ OB(rj). When n+∞ > 0, combining
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Lemma 3.8 and (3.23), we are left to compute the following inner product using (3.2):

〈
V(·; rj),U(`)(·; sj + 2, 1

2 , n, µp)
〉

=

∫
Γ∞\Γ0(p)

ysj+2e(−n+∞x)
e−2πn+∞yeT`

sin(π`p )
V(z; rj)

dxdy

y2

= (4πn+∞)−sj−1
ρ

(`)
j,∞(n)

sin(π`p )

Γ(2sj + 1)

Γ(sj + 7
4 )
.

(3.26)

Similarly, when n+∞ < 0 we compute:

〈
V(·; rj),U(`)(·; sj + 2,− 1

2 , 1− n, µp)
〉

=

∫
Γ∞\Γ0(p)

ysj+2e(−n+∞x)
e2πn+∞yeT`

sin(π`p )
V(z; rj)

dxdy

y2

= (4π|n+∞|)−sj−1
ρ

(`)
j,∞(n)

sin(π`p )

Γ(2sj + 1)

Γ(sj + 9
4 )
.

(3.27)

Combining Lemma 3.8 with (3.23), (3.26) and (3.27), we get

Res
s=sj

Z
(`)
∞∞
m,n,+

(s) =
∑

V∈OB(rj)

e( 1
8 )

p−1∑
L=1

ρ
(L)
j,∞(m)

sin(πLp )

 ρ
(`)
j,∞(n)

sin(π`p )
·

Γ(sj + 1
4 sgnn+∞)Γ(2sj − 1)

π2sj−1|4m+∞n+∞|sj−1Γ(sj − 1
4 )

(3.28)

and finish the proof.

3.2.2 The cusp 0

Recall from (1.10) that Γ0 is the stabilizer of the cusp 0 in Γ0(p) and σ0 =
(

0 −1/
√
p√

p 0

)
is the scaling matrix

of the cusp 0. They satisfy the property σ−1
0 Γ0σ0 = Γ∞, where Γ∞ = {±( 1 n

0 1 ) : n ∈ Z} is the stabilizer of

the cusp ∞.

Fix an integer r ≥ 0. Recall the definition of xr in (2.37). For (k, µ) = ( 1
2 , µp) or (− 1

2 , µp), we take

m = (m(1), · · · ,m(p−1))T ∈ Zp−1 for each `. Recall the definition of α
(`)
±0 and m

(`)
±0 in (2.36) and of B r C in

(2.38). We write m > 0 (resp. m ≤ 0) if every entry m(`) > 0 (resp. every entry m(`) ≤ 0).

For m > 0, we define

U0,(`)(z; s, k,m
(`), µ, r) :=

∑
γ∈Γ0\Γ0(p)

µ(γ)−1wk(σ−1
0 , γ)j(σ−1

0 γ, z)−k(Imσ−1
0 γz)se

(
m

(`)
±0σ

−1
0 γz

)
e`, if ` ∈B r C,

0e`, otherwise, never used.

(3.29)

We also define

U0(z; s, k,m, µ, r) :=
∑

`∈BrC

U0,(`)(z; s, k,m
(`), µ, r). (3.30)

Note that U0,(`)(z; s, k,m(`), µ, r) is different from U
(`)
0 (z; s, k,m, µ, r), where U

(`)
0 (z; s, k,m, µ, r) is defined

to have the same `-th entry as U0(z; s, k,m, µ, r) but has 0 in the other entries. The Poincaré series

U0(z; s, k,m, µ, r) and every U0,(`)(z; s, k,m
(`), µ, r) converge absolutely and uniformly in any compact

subset of Re s > 1, and are in Lk(Γ0(p), µ). To show the transformation law, e.g.

U0(γ1z; s, k,m, µ, r) = µ(γ1)j(γ1, z)
kU0(z; s, k,m, µ, r) for γ1 ∈ Γ0(p),
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it suffices to show that for γ1, γ2 ∈ Γ0(p), we have

µ(γ2γ
−1
1 )−1 · wk(σ−1

0 , γ2γ
−1
1 )j(σ−1

0 γ2γ
−1
1 , γ1z)

−k

=
(
µ(γ2)µ(γ−1

1 )
)−1

wk(γ2, γ
−1
1 )

· j(σ−1
0 , γ2z)

−kj(γ2γ
−1
1 , γ1z)

−kj(σ−1
0 γ2γ

−1
1 , γ1z)

kj(σ−1
0 γ2γ

−1
1 , γ1z)

−k

= µ(γ1)µ(γ2)−1j(γ2, z)
−kj(γ−1

1 , γ1z)
−kj(γ2γ

−1
1 , γ1z)

k · j(σ−1
0 , γ2z)

−kj(γ2γ
−1
1 , γ1z)

−k

= µ(γ1)j(γ1, z)
k · µ(γ2)−1j(σ−1

0 , γ2z)
−kj(γ2, z)

−k

= µ(γ1)j(γ1, z)
k · µ(γ2)−1wk(σ−1

0 , γ2)j(σ−1
0 γ2, z)

−k,

(3.31)

where we have used the trick in (3.18), µ(γ−1
1 ) = µ(γ1)−1 and j(γ−1

1 , γ1z)
kj(γ1, z)

k = 1.

Recall the scaling matrices σ0 =
(

0 −1/
√
p√

p 0

)
and σ∞ = I. We have the following double coset decompo-

sition by [38, (2.32)]:

σ−1
0 Γ0(p)σ∞ = σ−1

0 Γ0(p) =
⋃
a>0
p-a

⋃
b (mod a)∗

Γ∞

(
c√
p

d√
p

−a√p −b√p

)
Γ∞. (3.32)

Then γ1 ∈ Γ0 \ Γ0(p)⇔ γ2 = σ−1
0 γ1 ∈ Γ∞ \ σ−1

0 Γ0(p) and all choices of γ2 can be described as

γ2 ∈ {σ−1
0

(
a b
c d

)
( 1 t

0 1 ) : a > 0, p - a, b (mod a)∗, t ∈ Z}.

Recall (2.45), Definition 2.11, (2.35) and the property (1.9) for νη. We have

µ0∞(γ) = µ(σ0γ)wk(σ−1
0 , σ0γ) and µ0∞(σ−1

0

(
a b
c d

)
( 1 t

0 1 )) = µ0∞(σ−1
0

(
a b
c d

)
)e(−tα±∞).

We also have

wk(σ−1
0 , γ)j(σ−1

0 γ, z)k = j(γ, z)kj(σ−1
0 , γz)k = e(−k2 )( az+b

|az+b| )
k for γ =

(
a b
c d

)
, a > 0 and c > 0.

To compute the Fourier expansion of U0(z; s, k,m, µ, r) when Re s > 1, we have

U0(z; s, k,m, µ, r)

=
∑

`∈BrC

∑
γ=

(
c√
p

d√
p

−a√p −b√p

)
γ∈Γ∞\σ−1

0 Γ0(p)

µ0∞(γ)−1

(
−az − b
| − az − b|

)−k yse(m
(`)
±0γz)

|a√pz + b
√
p|2s

e`

=
∑

`∈BrC

∑
a>0
p-a

∑
b(a)∗

0<c<pa, p|c
ad−bc=1

µ0∞
(
σ−1

0

(
a b
c d

))−1

ps

∑
t∈Z

e(tα±∞)

(
−z − b

a − t
| − z − b

a − t|

)−k yse(m(`)
±0(cz+d)

−paz−pb

)
|az + b+ ta|2s

e`.

Note that cz+d
−paz−pb = − c

pa −
1

pa(az+b) and µ(c, d+ tc, `, p) = µ(c, d, `, p) by (2.34) for all ` and t. Recall that

the matrix µ0∞
(
σ−1

0

(
a b
c d

))−1
maps the entry at [a`] to ` and νη

((
a b+ta
c d+tc

))
= νη(

(
a b
c d

)
)e(− t

24 ). Then when
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` /∈B a, r C, the contribution from a single a to the `-th entry is zero; when ` ∈B a, r C, such contribution is

e(−k2 )

psa2s

∑
b (mod a)∗

0<c<pa, p|c
s.t. ad−bc=1

µ0∞
(
σ−1

0

(
a b
c d

))−1
e

(
−
m

([a`])
±0 c

pa

)
e[a`]

·
∑
t∈Z

e(tα±∞)

(
z + b

a + t

|z + b
a + t|

)−k
ys

|z + b
a + t|2s

e

(
−m([a`])

±0

pa2(z + b
a + t)

)

= yse(−k2 )
∑
t∈Z

S
(`)
0∞(m([a`]), t, a, µ; r)

(a
√
p)2s

B(a
√
p,m

([a`])
±0 , t±∞, y, s, k)e(t±∞x).

Here we get the last step in the same way as the steps before (3.19). The Fourier expansion of U0(z; s, k,m, µ, r)

for Re s > 1 is then

U0(z; s, k,m, µ, r)

= yse(−k2 )
∑
a>0
p-a

∑
`∈Ba,rC

∑
t∈Z

S
(`)
0∞(m([a`]), t, a, µ; r)

(a
√
p)2s

B(a
√
p,m

([a`])
±0 , t±∞, y, s, k)e(t±∞x) (3.33)

where S
(`)
0∞(m([a`]), t, c, µ; r) is defined in (2.47).

Similarly, for L ∈B r C, we can compute the Fourier expansion of U0,(L)(z; s, k,m(L), µ, r) (3.29) and get

U
(`)
0,(L)(z; s, k,m

(L), µ, r)

= yse(−k2 )
∑
a>0:

p-a, [a`]=L

∑
t∈Z

S
(`)
0∞(m(L), t, a, µ; r)

(a
√
p)2s

B(a
√
p,m

(L)
±0 , t±∞, y, s, k)e(t±∞x).

(3.34)

If Re s > 1 and λ = s(1− s) is an eigenvalue of ∆k, we have the recurrence relation

U0,(`)(z; s, k,m
(`), µ, r) = −4πm

(`)
±0RλU0,(`)(z; s+ 1, k,m(`), µ, r) (3.35)

U0(z; s, k,m, µ, r) = −4π
∑

`∈BrC

m
(`)
±0RλU0,(`)(z; s+ 1, k,m(`), µ, r) (3.36)

for Rλ = (∆k + λ)−1. Then U0(z; s, k,m, µ, r) and every U0,(`)(z; s, k,m
(`), µ, r) can be meromorphically

continued to the half plane Re s > 1
2 except at most a finite number of simple poles at s = sj with 1

2 < sj < 1.

Let OB(rj) be an orthonormal basis of L̃ 1
2
(Γ0(p), µp, rj) and let V(z; rj) ∈ OB(rj) (see (3.8)). For m ≤ 0

(then 1−m > 0), the residue of U0(z; s,− 1
2 ,1−m, µp, r) at s = sj is given by∑

V∈OB(rj)

Res
s=sj

〈
U0(·; s,− 1

2 ,1−m, µp, r),V(·; rj)
〉

V(z; rj). (3.37)

We will compute the inner product below and will finally get (3.40). Recall (3.29) for the definition of U0,(`).
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When ` ∈B r C, we use V to abbreviate the second term in the inner product V(·; rj) and get〈
U0,(`)(·; s,− 1

2 ,1−m, µp, r),V(·; rj)
〉

=

∫
Γ0(p)\H

VH
∑

γ∈Γ0\Γ0(p)

µp(γ)−1w− 1
2
(σ−1

0 , γ)j(σ−1
0 γ, z)−

1
2 Im(σ−1

0 γz)se((1−m)
(`)
−0z)e`

dxdy

y2

=
∑

γ∈Γ0\Γ0(p)

∫
σ−1
0 γ(Γ0(p)\H)

V(σ0z; rj)
Hj(σ0, z)

1
2 yse(m

(`)
+0x)e2πm

(`)
+0ye`

dxdy

y2

=

∫ ∞
0

yse2πm
(`)
+0y

dy

y2

∫
R

(V| 1
2
σ0)(z; rj)

He(m
(`)
+0x)e`dx,

where we have used the following properties: µp(γ) is unitary, j(M, z)j(M−1,Mz) = 1 for M ∈ SL2(R), and

the trick in (3.18):

j(γ−1, σ0z)
− 1

2w− 1
2
(σ−1

0 , γ)j(σ−1
0 γ, γ−1σ0z)

− 1
2

= j(γ−1, σ0z)
− 1

2 j(γ, γ−1σ0z)
− 1

2 j(σ−1
0 , γγ−1σ0z)

− 1
2 j(σ−1

0 γ, γ−1σ0z)
1
2 j(σ−1

0 γ, γ−1σ0z)
− 1

2

= j(σ−1
0 , σ0z)

− 1
2 = j(σ0, z)

1
2 .

We have also used the property that for every cusp a of Γ,⋃
γ∈Γa\Γ

σ−1
a γ(Γ \H) = Γ∞ \H, up to a zero-measure set.

Then we can apply (3.2) to get

〈
U0,(`)(·; s,− 1

2 , 1−m(`), µp, r),V(·; rj)
〉

= ρ
(`)
j,0(m(`))

∫ ∞
0

ys−1e2πm
(`)
+0yW− 1

4 ,irj

(
4π|m(`)

+0|y
) dy
y

= ρ
(`)
j,0(m(`))(4π|m(`)

+0|)1−sΓ(s− sj)Γ(s+ sj − 1)

Γ(s+ 1
4 )

.

(3.38)

The residue of U0,(`)(z; s,− 1
2 , 1−m(`), µp, r) at s = sj is then given by the following sum combining (3.38):

∑
V∈OB(rj)

Res
s=sj

〈
U0,(`)(·; s,− 1

2 , 1−m(`), µp, r),V(·; rj)
〉

V(z; rj). (3.39)

Summing up for ` ∈B r C, we get〈
U0(z; s,− 1

2 ,1−m, µp, r),V(·; rj)
〉

=
∑

`∈BrC

ρ
(`)
j,0(m(`))(4π|m(`)

+0|)1−sΓ(s− sj)Γ(s+ sj − 1)

Γ(s+ 1
4 )

. (3.40)

The following lemma still holds as in [16, Lemma 1] because the proofs are essentially the same except for

the difference of the scalar-valued Petersson inner product and the vector-valued one in (2.25). We omit the

proof here. Recall (3.30), (3.29) and (3.16).
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Lemma 3.10. Let s = σ + it with 1
2 < σ ≤ 2, |t| > 1, and M = max

`∈BrC
|m(`)

+0|. We have

〈U0(·; s, k,m, µ, r),U0(·; s, k,m, µ, r)〉 �p
M2

(σ − 1
2 )2

,

〈
U0,(`)(·; s, k,m(`), µ, r),U0,(`)(·; s, k,m(`), µ, r)

〉
�p

|m(`)
+0|2

(σ − 1
2 )2

.

Recall (3.14) for our Kloosterman-Selberg zeta functions. We have the following lemma.

Lemma 3.11. Let m ≤ 0, 1 ≤ `, L ≤ p− 1, and Re s = σ > 1
2 . Then

Z
(`)
0∞;r
m,n,+

(s) and Z
(`)

0∞;r

m(L),n,+

(s) are meromorphic in Re s > 1
2

with at most a finite number of simple poles in ( 1
2 , 1). Moreover, when n+∞ > 0, we have〈

U0,(L)(·; s,− 1
2 , 1−m(L), µp, r), U(`)(·; s+ 2, 1

2 , n, µp, r)
〉

=
e( 1

8 )Γ(2s+ 1)

4s+1πn2
+∞Γ(s+ 1

4 )Γ(s+ 7
4 )
Z

(`)
0∞;r

m(L),n,+

(s) +R
(`)

0∞;r

m(L),n,+

(s),

〈
U0(·; s,− 1

2 ,1−m, µp, r), U(`)(·; s+ 2, 1
2 , n, µp, r)

〉
=

e( 1
8 )Γ(2s+ 1)

4s+1πn2
+∞Γ(s+ 1

4 )Γ(s+ 7
4 )
Z

(`)
0∞;r
m,n,+

(s) +R
(`)
0∞;r
m,n,+

(s),

and when n+∞ < 0, we have〈
U0,(L)(·; s,− 1

2 , 1−m(L), µp, r), U(`)(·; s+ 2,− 1
2 , 1− n, µp, r)

〉
=

e( 1
8 )Γ(2s+ 1)

4s+1π|n+∞|2Γ(s− 1
4 )Γ(s+ 9

4 )
Z

(`)
0∞;r

m(L),n,+

(s) +R
(`)

0∞;r

m(L),n,+

(s),

〈
U0(·; s,− 1

2 ,1−m, µp, r), U(`)(·; s+ 2,− 1
2 , 1− n, µp, r)

〉
=

e( 1
8 )Γ(2s+ 1)

4s+1π|n+∞|2Γ(s− 1
4 )Γ(s+ 9

4 )
Z

(`)
0∞;r
m,n,+

(s) +R
(`)
0∞;r
m,n,+

(s).

Here both R
(`)

0∞;r

m(L),n,+

(s) and R
(`)
0∞;r
m,n,+

(s) are holomorphic in σ > 1
2 and

R
(`)

0∞;r

m(L),n,+

(s)�p

|m(L)
+0 n+∞|
σ − 1

2

, R
(`)
0∞;r
m,n,+

(s)�p
|Mn+∞|
σ − 1

2

.

Proof. Set Re s2 = σ2 > Re s1 = σ1 >
1
2 . We only prove the formulas for the inner products involving

U0,(L)(·; s,− 1
2 , 1−m

(L), µp, r), while the other two formulas for U0(·; s,− 1
2 ,1−m, µp, r) follow by summing

on L ∈B r C and by M = max
L∈BrC

|m(L)
+0 |.

After we prove the formulas for these inner products, the meromorphic property of the Kloosterman-Selberg
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zeta functions follows directly from the meromorphic continuation (3.35) and (3.36).

We start with the first inner product using unfolding. Here U0,(L) abbreviates the first term in the inner

product. Recall (3.29) and (3.16). We have〈
U0,(L)(·; s1,− 1

2 ,m
(L), µp, r),U(`)(·; s2,

1
2 , n, µp, r)

〉
=

∫
Γ0(p)\H

 ∑
γ∈Γ∞\Γ0(p)

µp(γ)−1j(γ, z)−
1
2 (Im γz)s2

e(n+∞γz)

sin(π`p )
e`

H

U0,(L)
dxdy

y2

=
∑

Γ∞\Γ0(p)

∫
Γ0(p)\H

ys2e−2πn+∞y
e(−n+∞x)eT`

sin(π`p )
U0,(L)(z; s1,− 1

2 ,m
(L), µp, r)

dxdy

y2
.

Then we apply the Fourier expansion of U0,(L)(·; s1,− 1
2 ,m

(L), µp, r) in (3.34) with (3.24) to continue:

= e(− 1
4 )

∑
a>0: p-a,
[a`]=L

S
(`)
0∞(1−m(L), 1− n, a, µp)

(a
√
p)2s1

∫ ∞
0

ys2−s1−1e−2πn+∞y

·
∫
R

(
u+ i

|u+ i|

)− 1
2

e

(
−m(L)

+0 (u+ i)

pa2y(u2 + 1)
− n+∞yu

)
du

(u2 + 1)s1
dy

=
e(− 3

8 )41−s2π1+s1−s2

ns2−s1+∞
· Γ(s2 + s1 − 1)Γ(s2 − s1)

Γ(s1 + 1
4 )Γ(s2 − 1

4 )
Z

(`)
0∞;r

m(L),n,+

(s1) +R
(`)

0∞;r

m(L),n,+

(s1, s2).

Here

R
(`)

0∞;r

m(L),n,+

(s1, s2) = e(− 3
8 )

∑
a>0: p-a,
[a`]=L

S
(`)
0∞(m(L), n, a, µp)

(a
√
p)2s1

∫ ∞
0

ys2−s1−1e−2πn+∞y

·
∫
R

(
u+ i

|u+ i|

)− 1
2

e (−n+∞yu)

(
e

(
−m(L)

+0 (u+ i)

pa2y(u2 + 1)

)
− 1

)
du

(u2 + 1)s1
dy

=
∑

a>0: p-a,
[a`]=L

S
(`)
0∞(m(L), n, a, µp)

(a
√
p)2s1

Op

(
|m(L)

+0 n+∞|
pa2(σ1 − 1

2 )

)
= Op

(
|m(L)

+0 n+∞|
σ1 − 1

2

)

and is holomorphic in the region Re s1 > 1
2 with s2 = s1 + 2. The last step is by the trivial bound

S
(`)
0∞(m(L), n, a, µp)� a.

Then we deal with the case n+∞ < 0. As before, we have〈
U0,(L)(·; s1,− 1

2 , 1−m(L), µp, r), U(`)(·; s2,− 1
2 , 1− n, µp, r)

〉
=

∫
Γ∞\H

ys2
e(−n+∞z)

sin(π`p )
eT` U0,(L)(·; s1,− 1

2 , 1−m(L), µp, r)
dxdy

y2

=
e(− 3

8 )41−s2π1+s1−s2

|n+∞|s2−s1
· Γ(s2 + s1 − 1)Γ(s2 − s1)

Γ(s1 − 1
4 )Γ(s2 + 1

4 )
Z

(`)
0∞;r

m(L),n,+

(s1) +R
(`)

0∞;r

m(L),n,+

(s1, s2).

We still have that R
(`)

0∞;r

m(L),n,+

(s1, s2) = Op

(
|m(L)

+0 n+∞|
σ1− 1

2

)
and is holomorphic for σ1 >

1
2 and s2 = s1 + 2. This
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finishes the proof.

The following proposition follows directly from Lemma 3.11, Cauchy-Schwarz, Lemma 3.10 and Lemma 3.7.

Note that the norms involving s+ 2 and s+ 2 have σ+ 2− 1
2 > 2 and do not contribute to the denominator.

Proposition 3.12. Let m ≤ 0, M = max
`∈BrC

|m(`)
+0| and s = σ + it with Re s = σ > 1

2 . When |t| → ∞, we

have the growth condition

Z
(`)

0∞;r

m(L),n,+

(s)�p

|m(L)
+0 n+∞|3|t|

1
2

σ − 1
2

and Z
(`)
0∞;r
m,n,+

(s)�p
|Mn+∞|3|t|

1
2

σ − 1
2

.

Then we can prove the remaining bounds (3.12) and (3.13) in Theorem 3.5.

Proof of (3.12) and (3.13) in Theorem 3.5. Take any small ε > 0. Since Z
(`)

0∞;r

m(L),n,+

(s) �ε ζ(1 + ε) for

Re s = 1 + ε, by the Phragmén-Lindelöf principle, we have

Z
(`)

0∞;r

m(L),n,+

( 1+s
2 )�p,ε |m(L)n+∞|3|t|

1
2−

σ
2 +ε for 0 < ε ≤ σ ≤ 1 + ε. (3.41)

Following the similar step after (3.25), by the proof of prime number theorem as in [40, Chapter 18], we have

∑
a>0:

p-a, [a`]=L

S
(`)
0∞(m(L), n, a, µp)

a
√
p

=
1

2πi

∫ 1+iT

1−iT
Z

(`)
0∞;r

m(L),n,+

( s+1
2 )

xs

s
ds+O

(
|m(L)

+0 n+∞|3x1+ε

T

)
. (3.42)

By Lemma 3.11, the function Z
(`)

0∞;r

m(L),n,+

( 1+s
2 ) has at most a finite number of simple poles at 2sj − 1 ∈ (0, 1)

(note that we are using 1+s
2 rather than s), where λj = sj(1− sj) < 1

4 are the discrete eigenvalues of ∆ 1
2

on

L 1
2
(Γ0(p), µp). Shifting the line of integration above to Re s = ε (ε− iT → ε+ iT ) such that 2sj − 1 > ε for

all λj <
1
4 , with the help of (3.41) we obtain

∑
a>0:

p-a, [a`]=L

S
(`)
0∞(m(L), n, a, µp)

a
√
p

=
∑

1
2<sj<

3
4

Res
s=2sj−1

Z
(`)

0∞;r

m(L),n,+

( 1+s
2 )

x2sj−1

2sj − 1
+O(|m(L)

+0 n+∞|3x
1
3 +ε),

where we have chosen T = x
2
3 .

For the residues, by Lemma 3.11, it suffices to compute the residue of the first and third inner products

in that lemma. Let OB(rj) be an orthonormal basis of L̃ 1
2
(Γ0(p), µp) and let V(z; rj) ∈ OB(rj). Combining

Lemma 3.11, (3.39), (3.26), and (3.27), the proof of (3.12) follows.

The proof of (3.13) follows by summing up on L ∈B r C and by M = max
L∈BrC

|m(L)
+0 |.

3.2.3 Convergence

In this subsection we show the growth rates and convergence properties of sums of Kloosterman sums. We

will need these estimates in Chapter 7.
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Proposition 3.13. With the same setting as Theorem 3.5, we have that all the following sums are convergent

with bound

∑
c>4π|m+∞n+∞|

1
2

p|c

S
(`)
∞∞(m,n, c, µp)

c
M

(
4π|m+∞n+∞|

1
2

c

)
�p |m+∞n+∞|4,

∑
a>4π

∣∣∣m(L)
+0 n+∞

∣∣∣ 12
p-a, [a`]=L

∣∣∣∣∣m
(L)
+0

n+∞

∣∣∣∣∣
1
4
S

(`)
0∞(m(L), n, a, µp)

a
√
p

M

(
4π|m(L)

+0 n+∞|
1
2

c

)
�p |m(L)

+0 n+∞|4,

∑
a>4π|Mn+∞|

1
2

p-a,

∑
`∈Ba,rC

∣∣∣∣∣m
([a`])
+0

n+∞

∣∣∣∣∣
1
4
S

(`)
0∞(m([a`]), n, a, µp)

a
√
p

M

(
4π|m([a`])

+0 n+∞|
1
2

c

)
�p |Mn+∞|4.

Here M is either the Bessel function I 1
2

or J 1
2
.

Proof. The proof is similar to the scalar-valued case. We use the properties of Bessel functions: by [31,

(10.14.4)], |Jα(x)| ≤α xα for x > 0 and α ≥ − 1
2 , and by [31, (10.30.1)], for 0 ≤ x ≤ β,

Iα(x)�α,β x
α for α > −1.

Let φ := 4π|m+∞n+∞|
1
2 . We have φ ≥ π

6 by α+∞ = 1
24 in (2.35). When t ≥ φ, we have 0 ≤ φ

t ≤ 1, hence by

[31, (10.29.1), (10.6.1)], we get

d

dt
I 1

2

(
φ

t

)
= − φ

2t2

(
I− 1

2

(
φ

t

)
+ I 3

2

(
φ

t

))
� φ

1
2 t−

3
2 + φ

5
2 t−

7
2 � φ

1
2 t−

3
2 , (3.43)

d

dt
J 1

2

(
φ

t

)
= − φ

2t2

(
J− 1

2

(
φ

t

)
− J 3

2

(
φ

t

))
� φ

1
2 t−

3
2 + φ

5
2 t−

7
2 � φ

1
2 t−

3
2 . (3.44)

By Corollary 3.6, we write

SC(x) :=
∑
p|c≤x

S
(`)
∞∞(m,n, c, µp)

c
�p |m+∞n+∞|3x

1
2−δ.

By partial integration, for T > φ we have

∑
φ<c≤T
p|c

S
(`)
∞∞(m,n, c, µp)

c
M

(
φ

c

)
�
∣∣∣∣M (

φ

T

)
SC(T )

∣∣∣∣+ |M (1)SC(φ)|+

∣∣∣∣∣
∫ T

φ

SC(t)φ
1
2 t−

3
2 dt

∣∣∣∣∣
� |m+∞n+∞|3φ

1
2 (1 + T−δ)

� |m+∞n+∞|4.

(3.45)
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For Y > X > φ, we also have

∑
X<c≤Y
p|c

S
(`)
∞∞(m,n, c, µp)

c
M

(
φ

c

)
�
∣∣∣∣M (

φ

Y

)
SC(Y )−M

(
φ

X

)
SC(X)

∣∣∣∣+

∣∣∣∣∣
∫ Y

X

SC(t)φ
1
2 t−

3
2 dt

∣∣∣∣∣
� |m+∞n+∞|3φ

1
2

∣∣Y −δ −X−δ∣∣ .
(3.46)

The above estimate (3.46) proves the convergence by Cauchy’s criterion, so we are able to let T → ∞ in

(3.45). We have proved the first bound of the proposition.

Again by Corollary 3.6, we write

SA(x) :=
∑
a≤x:

p-a, [a`]=L

S
(`)
0∞(m(L), n, a, µp)

a
√
p

�p |m(L)
+0 n+∞|3x

1
2−δ.

Let φ := 4π|m(L)
+0 n+∞|

1
2 . A similar application of the partial sum concludes the second formula. The third

formula follows from summing up L ∈B r C and by M = max
L∈BrC

|m(L)
+0 |. Here we can re-order the sum because

the convergence can be easily derived by separating the partial sum into # B r C parts.

For β > 0, let Γ(α;β) :=
∫∞
β
tα−1e−tdt be the incomplete Gamma function. We have Γ(α;x) ∼ xα−1e−x

when x→∞.

Proposition 3.14. With the same setting as Proposition 3.13, we have

∑
c>0: p|c

S
(`)
∞∞(m,n, c, µp)

c
I 1

2

(
4π|m+∞n+∞|

1
2

c

)
�p |m+∞n+∞|5e4π|m+∞n+∞|

1
2 ,

∑
c>0: p|c

S
(`)
∞∞(m,n, c, µp)

c
J 1

2

(
4π|m+∞n+∞|

1
2

c

)
�p |m+∞n+∞|5,

∑
a>0
p-a

∑
`∈Ba,rC

∣∣∣∣∣m
([a`])
+0

n+∞

∣∣∣∣∣
1
4
S

(`)
0∞(m([a`]), n, a, µp)

a
√
p

I 1
2

(
4π|m([a`])

+0 n+∞|
1
2

a
√
p

)
�p |Mn+∞|5e4π|Mn+∞|

1
2 ,

∑
a>0
p-a

∑
`∈Ba,rC

∣∣∣∣∣m
([a`])
+0

n+∞

∣∣∣∣∣
1
4
S

(`)
0∞(m([a`]), n, a, µp)

a
√
p

J 1
2

(
4π|m([a`])

+0 n+∞|
1
2

a
√
p

)
�p |Mn+∞|5.
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Hence, by denoting q = e(z) with y = Im z > 0, the following series converge:

∑
n+∞>0

∣∣∣∣m+∞

n+∞

∣∣∣∣ 14
∣∣∣∣∣∣
∑

c>0: p|c

S
(`)
∞∞(m,n, c, µp)

c
I 1

2

(
4π|m+∞n+∞|

1
2

c

)∣∣∣∣∣∣ |qn+∞ |,

∑
n+∞<0

∣∣∣∣m+∞

n+∞

∣∣∣∣ 14
∣∣∣∣∣∣
∑

c>0: p|c

S
(`)
∞∞(m,n, c, µp)

c
J 1

2

(
4π|m+∞n+∞|

1
2

c

)∣∣∣∣∣∣ ∣∣Γ( 1
2 , 4π|n+∞|y)qn+∞

∣∣ ,
∑

n+∞>0

∣∣∣∣∣∣∣∣
∑∑
a>0: p-a,
`∈Ba,rC

∣∣∣∣∣m
([a`])
+0

n+∞

∣∣∣∣∣
1
4
S

(`)
0∞(m([a`]), n, a, µp)

a
√
p

I 1
2

(
4π|m([a`])

+0 n+∞|
1
2

c

)∣∣∣∣∣∣∣∣ |q
n+∞ |,

∑
n+∞<0

∣∣∣∣∣∣∣∣
∑∑
a>0: p-a,
`∈Ba,rC

∣∣∣∣∣m
([a`])
+0

n+∞

∣∣∣∣∣
1
4
S

(`)
0∞(m([a`]), n, a, µp)

a
√
p

J 1
2

(
4π|m([a`])

+0 n+∞|
1
2

c

)∣∣∣∣∣∣∣∣
∣∣Γ( 1

2 , 4π|n+∞|y)qn+∞
∣∣ .

Proof. We first prove the formulas involving I 1
2
. We refer to [31, (10.30.4)] that Iβ(φt )�β e

φ(t/φ)
1
2 when

t ≤ φ. For the first formula, we let φ = 4π|m+∞n+∞|
1
2 and use partial summation with [31, (10.29.1)] to get

∑
1≤c≤φ: p|c

S
(`)
∞∞(m,n, c, µp)

c
I 1

2

(
4π|m+∞n+∞|

1
2

c

)
� |m+∞n+∞|3eφφ

3
2−δ � |m+∞n+∞|5eφ.

We combine this with Proposition 3.13 to get the desired bound. Since |e(n+∞z)| = e−2πn+∞y, and considering

that the inner sum grows at a rate of eO(n
1/2
+∞), the fifth formula is clear.

To prove the third formula, we start by choosing a fixed L ∈B r C. Then we set φ = 4π|m(L)
+0 n+∞|

1
2 and

apply the second formula from Corollary 3.6. Adding for all L ∈B r C, we get the desired bounds here. The

seventh formula follows from the same reason as the fifth one.

For the formulas involving J 1
2

we apply (3.44) and get the similar conclusion without the exponential

growth term eφ. Since n+∞ < 0, we have

∣∣Γ( 1
2 , 4π|n+∞|y)e(n+∞z)

∣∣� e−2π|n+∞|y

and still get the convergence as y > 0.

Remark. The step of repeating the selection of L and then summing up on L ∈B r C is necessary. This is

because m
([a`])
+0 changes when a varies, but it remains constant when we specify [a`] = L.
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Chapter 4

Sums of Kloosterman sums: uniform

bounds, mixed-sign case

In Chapter 4 and Chapter 5 we will prove Theorem 1.7. Since the trace formula has different settings in the

mixed-sign case m̃ñ < 0 and the same-sign case m̃ñ > 0, we separate the two chapters. The proof in this

chapter is contained in [14].

Before we prove Theorem 1.7, we need a few preparations.

4.1 Examples of admissible multipliers and a lower bound of the

spectrum

Suppose N is a positive integer. In this section we are going to prove the following proposition and conclude

a lower bound for the exceptional spectrum in certain cases.

Proposition 4.1. If ν = χνθ or ν = χνη where χ is a real character modulo N , then ν and its conjugate are

admissible, i.e. satisfy the requirements in Definition 1.6. If ν is the multiplier for a weight ± 1
2 eta-quotient,

then ν satisfies the condition (1) in Definition 1.6.

We will verify this proposition in the next subsection while we only prove the case for weight 1
2 . The

proof for weight − 1
2 case with respect to the conjugate of each multiplier follows from the same process. For

simplicity we recall Dirichlet’s lemma:

Lemma 4.2. Every real character χ modulo N can be expressed in the form χ(y) = ( dy ) where d ≡ 0, 1 (mod 4)

depends on χ and N . Every primitive real character can be expressed in the form

χ(y) = (Dy ),

where D is a fundamental discriminant and |D| equals the conductor of χ.

4.1.1 Proof of Proposition 4.1

Suppose χ is a quadratic character modulo N . If ν = χνθ, write χ = (D· )1N/D where D is a fundamental

discriminant. Since ν is assumed to be a weight 1
2 multiplier, we have χ(−1) = 1 so D > 0. If D ≡ 0 (mod 4),
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we are done; if D ≡ 1 (mod 4), then −4D is fundamental and ν equals ( |−4D|
· )νθ on Γ0(N). Now we have

proved condition (1) for ν = χνθ.

The individual Weil bound is known by Blomer [42, (2.15)] that for 4|N |c, we have

|S(m,n, c, ν)| ≤ σ0(c)(m,n, c)
1
2 c

1
2 ,

where ν = ψνθ or ψνθ for a Dirichlet character ψ modulo N satisfying ψ(−1) = 1. This proves condition (2)

for ν = χνθ.

For ν = χνη, we have a map to L̃ 1
2

(
576N, ( 12

· )χνθ
)
:

Lemma 4.3. For ν = χνη and for each r, the map z → 24z gives an injection

L̃ 1
2
(N, ν, r)→ L̃ 1

2

(
576N, ( 12

· )χνθ, r
)
.

Proof. The proof follows from a similar process as [12, Lemma 3.2] by setting γ′ =
(

a 24b
c/24 d

)
when

γ =
(
a b
c d

)
∈ Γ0(576N), c > 0. For any f ∈ L̃ 1

2
(N, ν, r), define

g(z) := f(24z) = f | 1
2

((√
24 0

0 1/
√

24

))
.

Observe that

g| 1
2
γ = f | 1

2
γ′
(√

24 0

0 1/
√

24

)
.

One can check that (χνη)(γ′) = χ(d)( 12
d )νθ(γ) by (1.19) with the help of the identities e( 1−d

8 ) = ( 2
d )εd and

ε2
d = (−1

d ) for odd d.

Now ( 12
· )χνθ is a weight 1

2 multiplier on Γ0(M) = Γ0(576N) and χ(−1) = 1. As in the beginning of this

subsection, ( 12
· )χνθ equals (D

′

· )νθ on Γ0(M) for some D′ fundamental. Finally we pick (D
′

· )νθ or ( |−4D′|
· )νθ.

Although we only need an average bound, we have an individual Weil bound for ν = χνη.

Lemma 4.4. Suppose that ν = ψqνη where ψq is a Dirichlet character modulo q with q|N |c. Write

24m− 23 = α2M1 with M1 square-free. Then we have

|S(m,n, c, ν)| � q
3
2σ0((α, c))σ0(c)

√
c · ((24m− 23)(24n− 23), c)

1
2 .

Proof. Set r = N/q and s = c/N . By (1.11) we have αν = ανη so ñ = n− 23
24 . We have

S(m,n, c, ν) =
∑

d (mod c)∗

ψq(d)νη(γ)e

(
m̃a+ ñd

c

)

=
∑

d (mod c)∗

(
q∑
`=1

ψq(`)

q

q∑
h=1

e

(
h(d− `)

q

))
νη(γ)e

(
m̃a+ ñd

c

)

=
1

q

q∑
`=1

ψq(`)

q∑
h=1

e

(
−h`
q

) ∑
d (mod c)∗

νη(γ)e

(
m̃a+ (ñ+ hrs)d

c

)
.

The proof now follows from the Weil-type bound for S(m,n, c, νη). By [11, Proposition 2.1] we see that

|S(m,n, c, ν)| � qσ0((α, c))σ0(c)
√
c · max

1≤h≤q
(M1N2, c)

1
2 ,
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where N1 = 24n− 23 and N2 = 24(n+ hrs)− 23 = 24n− 23 + 24hc
q . We finish the proof by a rough estimate

(M1N2, c) ≤ q(M1N2,
c
q ) = q(M1N1,

c
q ) ≤ q(M1N1, c).

It remains to prove the claim for eta-quotients in Proposition 4.1.

Lemma 4.5. If ν is the multiplier system for an eta-quotient

f(z) =
∏
δ|L

η(δz)rδ

of weight 1
2 = 1

2

∑
δ|L rδ, then the map z → 24z gives an injection

L̃ 1
2
(N, ν, r)→ L̃ 1

2

576LN,
∏
δ|L

(
12δ

·

)rδ
νθ, r

 .

Proof. The proof is similar to Lemma 4.3. Let νδ denote the multiplier for a factor η(δz). Since for(
a b
c d

)
∈ Γ0(576δ),

( 24δ 0
0 1 )

(
a b
c d

)
=
(

a 24δb
c/24δ d

)
( 24δ 0

0 1 ),

we have

νδ

((
a 24b

c/24 d

))
= νη

((
a 24δb

c/24δ d

))
= ( c/24δ

d )e(d−1
8 ) = ( δd )( 12

d )νθ
((

a b
c d

))
because e( 1−d

8 ) = ( 2
d )εd when d is odd. We take the product of all the factors.

Remark. For the multiplier of a eta-quotient, the author does not know its Weil bound in general.

4.1.2 Lower bound for the exceptional spectrum

After we get a twisted theta-multiplier by level lifting, the following theorems show the relationship of

eigenvalues between weight 0 and weight 1
2 eigenforms.

Theorem 4.6 ([43, p. 304]). Let χ be a Dirichlet character modulo 4N ′ for a positive integer N ′, ν =

νθ

(
N ′

·

)
χ, then for each eigenvalue λ = 1

4 + r2 of ∆ 1
2

for (Γ0(4N ′), ν), there is an eigenvalue λ′ = 1
4 + 4r2

of ∆0 for (Γ0(2N ′), χ2).

Recall the definition (2.16) of r∆(N, ν, k). We have the following bound:

Proposition 4.7. Let ν be a weight k = ± 1
2 multipler of Γ = Γ0(N) satisfying condition (1) in Definition

1.6 and assume Hθ (2.15). Then we have

2 Im r∆ (N, ν, k) ≤ θ.

Proof. We prove the case for k = 1
2 and the other case follows by conjugation. Condition (1) gives the

injection

z → Bz : L̃ 1
2

(N, ν, r)→ L̃ 1
2

(
M, ( |D|· )νθ, r

)
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where 4|N |M . We set χ = (M· )( |D|· ) and apply Theorem 4.6 to get an eigenvalue λ′ = 1
4 + r′2 of ∆0 for

(Γ0(M2 ),1) with eigenparameter

r′ = r∆(−M2 ,1, 0) = 2r∆(N, ν, 1
2 ).

Assuming Hθ (2.15) we have Im r′ ≤ θ and finish the proof.

4.2 Kuznetsov trace formula in the mixed-sign case

Let a be a singular cusp for the weight k multiplier system ν on Γ = Γ0(N). For Re s > 1, define the

Eisenstein series associated to a as in [33], [35] by

Ea(z, s) :=
∑

γ∈Γa\Γ

ν(γ)w(σ−1
a , γ)(Imσ−1

a γz)sj(σ−1
a γ, z)−k (4.1)

and the Poincaré series for m > 0 by

Um(z, s) :=
∑

γ∈Γ∞\Γ

ν(γ)(Im γz)sj(γ, z)−ke(m̃γz). (4.2)

Both of the series converge absolutely and uniformly on compact subsets of the fundamental domain Γ \H
when Re s > 1 and both of them are automorphic functions of weight k as functions of z. The Eisenstein

series can be meromorphically extended to the entire s-plane and have Fourier expansions on s = 1
2 + ir for

r ∈ R ([33, (12-14)])

Ea(x+ iy, s) = δa∞y
s + ρa(0, r)y1−s +

∑
6̀=0

ρa(`, r)W k
2 sgn ˜̀,−ir(4π|˜̀|y)e(˜̀x)

= δa∞y
s +

δαν0 · 41−sΓ(2s− 1)

e
πik
2 Γ(s+ k

2 )Γ(s− k
2 )
y1−sϕa0(s)

+
∑
` 6=0

|˜̀|s−1
πsW k

2 sgn ˜̀,−ir(4π|˜̀|y)

e
πik
2 Γ(s+ k

2 sgn ˜̀)
ϕa`(s)e(˜̀x)

(4.3)

where

ϕa`(s) =
∑
c>0

1

c2s

∑
0≤d<c

γ=( ∗ ∗c d )∈σ−1
a Γ

ν(σaγ)wk(σ−1
a , σaγ)e

( ˜̀d

c

)
, ` 6= 0.

We introduce two different notations ρa(`, r) and ϕa`(s) for later convenience. The Fourier expansion of

Ea(z, s) at the cusp b is denoted as [38, (2.64)] [44, p. 1551]

(Ea(·, s)|kσb)(z) = δaby
s + ρab(0, s)y1−s +

∑
` 6=0

ρab(`, s)W k
2 sgn `b,

1
2−s

(4π|`b|y)e(`bx). (4.4)

where ρab(0, s) = 0 when nb 6= 0. The Fourier expansion of the Poincaré series can be given by [11, (4.5)]

Um(x+ iy, s) = yse(m̃z) + ys
∑
`∈Z

∑
c>0

S(m, `, c, ν)

c2s
B(c, m̃, ˜̀, y, s, k)e(˜̀x). (4.5)
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where

B(c, m̃, ˜̀, y, s, k) = y

∫ ∞
−∞

e

(
−m̃

c2y(u+ i)

)(
u+ i

|u+ i|

)−k
e(−˜̀yu)

y2s(u2 + 1)s
du.

When Re s > 1, we have Um(·, s) ∈ Lk(N, ν). More properties of these two series can be found in [33].

The following notations are very important in the remaining part of this chapter:

Setting 4.8. Let a = 4π
√
|m̃ñ| 6= 0 and 0 < T ≤ x

3 with T � x1−δ where δ ∈ (0, 1
2 ) and finally will be

chosen as 1
3 .

We define a family of test functions φ := φa,x,T as in [19] and [11]:

Setting 4.9. The test function φ : [0,∞)→ R is four times continuously differentiable and satisfies

1. φ(0) = φ′(0) = 0, and for some ε > 0,

φ(j)(x)�ε x
−2−ε (j = 0, · · · , 4) as x→∞.

2. φ(t) = 1 for a
2x ≤ t ≤

a
x .

3. φ(t) = 0 for t ≤ a
2x+2T and t ≥ a

x−T .

4. φ′(t)�
(

a
x−T −

a
x

)−1

� x2

aT .

5. φ and φ′ are piecewise monotone on a fixed number of intevals.

Using the notation

ξa(r, f) :=

∫
Γ\H

f(z)Ea

(
z, 1

2 + ir
)dxdy
y2

,

we have the spectral theorem:

Theorem 4.10 ([35, Theorem 2.1]). Let {vj(z)} be an orthonormal basis of L̃k(N, ν). Then, any f ∈ Bk(Γ, ν)

has the expansion

f(z) =
∑
j

〈f, vj〉vj(z) +
∑

singular a

1

4π

∫ ∞
−∞

ξa(r, f)Ea

(
z, 1

2 + ir
)
dr

which converges absolutely.

We also have Parseval’s identity [33, (27)]: for f1, f2 ∈ Lk(Γ, ν),

〈f1, f2〉 =
∑
rj

〈f1, vj〉〈f2, vj〉+
∑

singular a

1

4π

∫ ∞
−∞

ξa(r, f)ξa(r, f2)dr. (4.6)

Define

φ̌(r) := chπr

∫ ∞
0

K2ir(u)φ(u)
du

u
(4.7)

which is an even function for r ∈ R. Here we prove a Kuznetsov trace formula in the mixed-sign case:

Theorem 4.11. Suppose ν is a multiplier system of weight k = ± 1
2 on Γ = Γ0(N). Let {vj(·)} be an

orthonormal basis of L̃k(N, ν). Let ρj(n) denote the n-th Fourier coefficient of vj(·). For each singular cusp
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a of (Γ, ν), let Ea(·, s) be the associated Eisenstein series. Let ϕan( 1
2 + ir) and ρa(n, r) be defined as in (4.3).

Then for m̃ > 0 and ñ < 0 we have

i−k

2

∑
N |c>0

S(m,n, c, ν)

c
φ

(
4π
√
m̃|ñ|
c

)
= 4
√
m̃|ñ|

∑
rj

ρj(m)ρj(n)

chπrj
φ̌(rj) +

∑
singular a

Ea, (4.8)

where

Ea =

∫ ∞
−∞

(
m̃

|ñ|

)−ir ϕam

(
1
2 + ir

)
ϕan

(
1
2 + ir

)
φ̌(r)

Γ
(

1
2 + k

2 − ir
)

Γ
(

1
2 −

k
2 + ir

)
chπr

dr

= 4
√
m̃|ñ| · 1

4π

∫ ∞
−∞

ρa (m, r)ρa (n, r)
φ̌(r)

chπr
dr.

Remark. The last equality follows from the following identity√
|ñ|
π
ρa(n, r) =

e−
πik
2 πir|ñ|ir

Γ
(

1
2 + ir + k

2 sgn ñ
)ϕan

(
1

2
+ ir

)
. (4.9)

Proof. The proof follows the outline of [11, Section 4], taking into account the contribution of the continuous

spectrum. When n 6= ñ, i.e. αν > 0, as in [11, Lemma 4.2, Lemma 4.3], for Re s1 > 1 and Re s2 > 1 we have

Im,n(s1, s2) :=
〈
Um (·, s1, k, ν) ,U1−n (·, s2,−k, ν)

〉
=23−s1−s2

(
m̃

|ñ|

) s2−s1
2 i−kπΓ(s1 + s2 − 1)

Γ
(
s1 − k

2

)
Γ
(
s2 + k

2

) ∑
c>0

S(m,n, c, ν)

cs1+s2
Ks1−s2

(
4π
√
m̃|ñ|
c

)
.

Setting s1 = σ + it
2 and s2 = σ − it

2 with σ > 1 gives

Im,n
(
σ + it

2 , σ −
it
2

)
=

(
m̃

|ñ|

)− it2 23−2σi−kπΓ(2σ − 1)

Γ
(
σ − k

2 + it
2

)
Γ
(
σ + k

2 −
it
2

) ∑
c>0

S(m,n, c, ν)

c2σ
Kit

(
4π
√
m̃|ñ|
c

)
.

(4.10)

To compute the inner product in the second way we introduce the notation

Λ(s1, s2, r) = Γ
(
s1 − 1

2 − ir
)

Γ
(
s1 − 1

2 + ir
)

Γ
(
s2 − 1

2 − ir
)

Γ
(
s2 − 1

2 + ir
)
.

One has (see also [33, (32)])

ξa(r, Um(·,s, k, ν))

=ϕam

(
1
2 + ir

)
(4πm̃)1−sm̃−

1
2−ire

(
k
4

)
π

1
2−ir

Γ(s− 1
2 + ir)Γ(s− 1

2 − ir)
Γ(s− k

2 )Γ( 1
2 + k

2 − ir)

and

ξa

(
r, U1−n(·, s,−k, ν)

)
= ϕan

(
1
2 + ir

)
(4π|ñ|)1−s|ñ|− 1

2 +ire
(
−k4
)
π

1
2 +ir Γ(s− 1

2 + ir)Γ(s− 1
2 − ir)

Γ(s+ k
2 )Γ( 1

2 −
k
2 + ir)

.
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Applying Parseval’s identity (4.6) we get

Im,n(s1, s2) =
(4π)2−s1−s2m̃1−s1 |ñ|1−s2

Γ
(
s1 − k

2

)
Γ
(
s2 + k

2

)
∑

rj

ρj(m)ρj(n)Λ(s1, s2, rj)

+
∑

singular a

1

4
√
m̃|ñ|

∫ ∞
−∞

(
|ñ|
m̃

)ir ϕam

(
1
2 + ir

)
ϕan

(
1
2 + ir

)
Λ (s1, s2, r)

Γ
(

1
2 + k

2 − ir
)

Γ
(

1
2 −

k
2 + ir

) dr

 ,

and for s1 = σ + it
2 and s2 = σ − it

2 ,

Im,n
(
σ + it

2 , σ −
it
2

)
=

(4π)2−2σ|m̃ñ|1−σ (m̃/|ñ|)−
it
2

Γ
(
σ − k

2 + it
2

)
Γ
(
σ + k

2 −
it
2

)
∑

rj

ρj(m)ρj(n)Λ
(
σ + it

2 , σ −
it
2 , r
)

+
∑

singular a

1

4
√
m̃|ñ|

∫ ∞
−∞

(
|ñ|
m̃

)ir ϕam

(
1
2 + ir

)
ϕan

(
1
2 + ir

)
Λ
(
σ + it

2 , σ −
it
2 , r
)

Γ
(

1
2 + k

2 − ir
)

Γ
(

1
2 −

k
2 + ir

) dr

 .

(4.11)

When αν = 0(= αν), we define

I ′m,n(s1, s2) :=
〈
Um (·, s1, k, ν) ,U−n (·, s2,−k, ν)

〉
and the same process above shows that I ′m,n(s1, s2) equals the right hand side of both (4.10) and (4.11).

The expressions (4.10) and (4.11) are equal when σ > 1 and we justify their equality when σ = 1. The

first expression (4.10) involving Kit converges absolutely uniformly for σ ∈ [1, 2] because of [31, (10.45.7)]:

Kit(x)� (t shπt)−
1
2 as x→ 0

and condition (2) in Definition 1.6. By the basic inequalities

∣∣Γ(σ − 1
2 + iy)

∣∣ =
|Γ(σ + 1

2 + iy)|
|σ − 1

2 + iy|
≤ 2

∣∣Γ(σ + 1
2 + iy)

∣∣ ,
Λ(σ + it

2 , σ −
it
2 , y) > 0, and |ρρ′| ≤ |ρ|2 + |ρ′|2 for all y ∈ R and ρ, ρ′ ∈ C, the second expression (4.11)

involving Λ also converges absolutely uniformly for σ ∈ [1, 2] as a result of its absolute convergence for σ > 1.

With σ = 1, we set (4.10) and (4.11) equal, cancel their common factors, multiply by

2π
√
m̃|ñ| · 2

π2
t shπt

∫ ∞
0

Kit(u)φ(u)
du

u2

and integrate over t. The following equations are helpful for getting (4.8):

(1) Kontorovich-Lebedev transform [45, (35)]

2

π2

∫ ∞
0

Kit(x)t shπt

∫ ∞
0

Kit(u)φ(u)
du

u2
dt =

φ(x)

x
;

(2) Λ(1 + it
2 , 1−

it
2 , r) chπ( t2 + r) chπ( t2 − r) = π2;
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(3) [45, (39)] ∫ ∞
0

t shπt

chπ( t2 + r) chπ( t2 − r)

∫ ∞
0

Kit(u)φ(u)
du

u2
dt =

2

chπr
φ̌(r).

Theorem 4.11 now follows from this integration.

4.3 Estimating φ̌ for the full spectrum and a special φ

We focus on the case k = ± 1
2 and ν admissible as in Definition 1.6. Recall the notations Γ = Γ0(N), a, T ,

δ, φ in Settings 4.8 and 4.9 and φ̌ in (4.7). Recall that we write an eigenvalue λ of ∆k for (Γ0(N), ν) as

λ = 1
4 + r2 where r ∈ i(0, 1

4 ] ∪ [0,∞). Bounds are known for φ̌(r) when r ≥ 1 and here we give bounds for

r ∈ i(0, 1
4 ] ∪ [0, 1]. For simplicity, we omit the dependence of the implied constants on N , ν and ε in this

section.

4.3.1 For r ∈ i(0, 1
4
]

Suppose r = it for t ∈ (0, 1
4 ]. By [31, (10.27.3), §10.37], for fixed u, K−t(u) = Kt(u) > 0 is increasing as a

function of t > 0. By [31, (10.7.7), (10.27.8)] we have

K2t(u)� Γ(2t)22t

u2t
, u ≤ 1.

As for the discrete spectrum, there is a lower bound t for t ∈ (0, 1
4 ], hence an upper bound for Γ(2t) depending

on N . Thus,

K2t(u)� 1

u2t
, u ≤ 1.

By [31, (10.25.3)], we also have

K2t(u)� e−u, u > 1.

Let [α, β] = ∅ when β < α. We get

φ̌(it) = cosπt

∫ ∞
0

K2t(u)φ(u)
du

u

�
∫

[ 3a8x ,1]

du

u1+2t
+O

(∫
[1, 3a2x ]

e−udu

)

�
(x
a

)2t

+O(1).

(4.12)

In addition, assuming Hθ (2.15), by condition (1) in Definition 1.6 and Proposition 4.7, there are only

two cases for r = it: t = 1
4 or 2t ≤ θ. In the second case, we have

φ̌(r)�
(x
a

)θ
+O(1), r 6= i

4
. (4.13)

4.3.2 For real |r| ∈ [0, 1)

We cite [46, pp. 9.6.1, 9.8.5, 9.8.6] for numerical estimations of K0:

57



1. K0(u) > 0 for u > 0,

2. K0(u)� − log
(
u
2

)
for 0 < u ≤ 2,

3. K0(u)� u−
1
2 e−u for u ≥ 2,

and have

φ̌(0) =

∫ ∞
0

K0(u)φ(u)
du

u

�
∫

[ 3a8x ,2]

− log
(u

2

) du
u

+

∫
[2, 3a2x ]

u−
3
2 e−udu

�
(

log
3a

16x

)2

+ e−2 � (ax)ε.

(4.14)

The last inequality is due to a positive lower bound for a = 4π
√
|m̃ñ| ≥ 4πmin(αν , 1− αν) when αν > 0 and

a ≥ 4π when αν = 0, as m̃ñ 6= 0.

When r ∈ (0, 1), by [31, (10.32.9)]

|Kir(u)| ≤
∫ ∞

0

e−u chwdw = K0(u).

It follows from (4.14) that

φ̌(r)� (ax)ε, r ∈ [0, 1). (4.15)

4.3.3 For r ≥ 1

These bounds are recorded in [47, Theorem 5.1]. The first bound corrects [11, Theorem 6.1] and [12,

Proposition 6.2] (but later estimates in their paper are not affected).

φ̌(r)�


e−

r
2 for 1 ≤ r ≤ a

8x ,

r−1 for max
(
1, a8x

)
≤ r ≤ a

x ,

min
(
r−

3
2 , r−

5
2
x
T

)
for r ≥ max

(
a
x , 1
)
.

(4.16)

4.3.4 A special test function

Here we choose a special test function φ satisfying Setting 4.9 to compute the terms corresponding to the

exceptional spectrum r ∈ i(0, 1
4 ] in Theorem 1.7.

For a general weight k > 0 and m̃ > 0, ñ < 0 with exceptional eigenvalue λ < 1
4 , we set λ = s(1− s) for

s ∈ ( 1
2 , 1) and

t = Im r =
√

1
4 − λ =

√
1
4 − s(1− s) = s− 1

2 .

In (4.12) the exponent is 2t = 2s−1. Let the lower bound for t > 0 be t depending on N and 0 < T ′ ≤ T ≤ x
3

be T ′ := Tx−δ � x1−2δ.

Setting 4.12. In addition to the requirement in Definition 4.9, when a
x−T ≤ 1.999, we pick φ as a smoothed

function of this piecewise linear one
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x

y

a
2x+2T

a
2x

a
x

a
x−T

1

where 

φ′(u) = 2x(x+T )
aT u ∈ ( a

2x+2T−2T ′ ,
a

2x+2T ′ ),

φ′(u) = −x(x−T )
aT u ∈ ( a

x−T ′ ,
a

x−T+T ′ ),

0 ≤ φ′(u) ≤ 4x(x+T )
aT u ∈ ( a

2x+2T ,
a

2x+2T−2T ′ ) ∪ ( a
2x+2T ′ ,

a
2x ),

0 ≥ φ′(u) ≥ − 2x(x−T )
aT u ∈ (ax ,

a
x−T ′ ) ∪ ( a

x−T+T ′ ,
a

x−T ),

φ′(u) = 0 otherwise.

(4.17)

The above choice for φ′ is possible because there is no requirement for φ′′(u) when u ≤ 2 but for u→∞
in Setting 4.9.

Derived from [31, (10.25.2), (10.27.4), (10.37.1)], for r = it and 2t ∈ [2t, 1
2 ], we have

K2t(u) = 22t−1Γ(2t)u−2t +O((u2 )2t) uniformly for |u| ≤ 1.999

and

|K2t(u)| ≤ |K 1
2
(u)| � u−

1
2 e−u uniformly for u ≥ 1.

Thus, for r = it ∈ i[t, 1
4 ],

1

cosπt
φ̌(r) = 22t−1Γ(2t)

∫ 1.999

0

φ(u)u−2t du

u
+O

(∫ 1.999

0

φ(u)u2t du

u

)
+O (1)

= 22t−1Γ(2t)

∫ 1.999

0

φ(u)u−2t du

u
+O (1) .

(4.18)

Lemma 4.13. With the choice of φ in Setting 4.12, when r = it ∈ i(0, 1
4 ],

1

cosπt
φ̌(r) = 22t−1Γ(2t)

∫ a
x

a
2x

u−2t−1du+O
(
x2t−δa−2t + 1

)
=

22t−1(22t − 1)

2t
Γ(2t)

(x
a

)2t

+O
(
x2t−δa−2t + 1

)
.

(4.19)

Roughly speaking, this means that the integral on u ∈ ( a2x ,
a
x ) contributes the main term when x is large.

Proof of Lemma 4.13. When 1.999 < a
x−T ≤

3a
2x , we get x � a and φ̌(r) = O(1) by (4.12), so the lemma

is true in this case. It suffices to prove that when a
x−T ≤ 1.999, the integral on u < a

2x and u > a
x is

O(x2t−δa−2t). As T � x1−δ where δ > 0, we apply

(
1± αx−δ

)2t−1
= 1± (2t− 1)αx−δ +O(x−2δ) = 1 +O(x−δ)
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where the implied constants are absolute since 2t−1 ∈ (−1,− 1
2 ]. Combining the lower bound t ≥ t depending

on N , for the left part u ∈ [ a
2x+2T ,

a
2x ], we use (4.17) and the above formula to compute the integral in (4.18):

∫ a
2x

a
2x+2T

u−2t−1φ(u)du = −22t

2t

(x
a

)2t

+
2x(x+ T )

2taT

∫ a
2x

a
2x+2T

u−2tdu

+O

(
x1+δ

at

)(∫ a
2x+2T−2T ′

a
2x+2T

+

∫ a
2x

a
2x+2T ′

)
u−2tdu

= −22t

2t

(x
a

)2t

+
2x(x+ T )

2taT (1− 2t)

( a
2x

)1−2t
(

(1− 2t)
T

x
+O(x−2δ)

)
+O

(
x1+δ

at

)((
a

2x+ 2T

)1−2t

+
( a

2x

)1−2t
)
O(x−2δ)

= −22t

2t

(x
a

)2t

+
22t(1 + T

x )

2t

(x
a

)2t

+O
(
x2t−δa−2t

)
= O

(
x2t−δa−2t

)
.

For u ∈ [ax ,
a

x−T ], a similar process gives the same conclusion.

4.4 Two estimates for the coefficients of Maass forms

Our main results depend on two estimates for the Fourier coefficients of Maass forms. These estimates were

recorded in [12, Section 4] but only for the coefficients of Maass cusp forms. Here we also require estimates

for the coefficients of Eisenstein series.

Recall our notations in Settings 4.8 and 4.9. In [44] an estimate for the coefficients of Maass cusp forms

was given under the hypothesis that for some β ∈ ( 1
2 , 1),

∑
N |c>0

|S(n, n, c, ν)|
c1+β

�ε,ν |ñ|ε. (4.20)

Here we prove

Proposition 4.14. Suppose that ν is a multiplier on Γ = Γ0(N) of weight k = ± 1
2 which satisfies (4.20).

Let ρj(n) denote the Fourier coefficients of an orthonormal basis {vj(·)} of L̃k(N, ν). For each singular cusp

a of (Γ, ν), let Ea(·, s) be the associated Eisenstein series. Let ϕan( 1
2 + ir) and ρa(n, r) be defined as in (4.3).

Then for x > 0 we have

xk sgn ñ|ñ|

 ∑
x≤rj≤2x

|ρj(n)|2e−πrj+
∑

singular a

∫
|r|∈[x,2x]

|ρa(n, r)|2e−π|r|dr

)

�ε,N x2 + |ñ|β+εx1−2β logβ x.

Remark. Since we focus on an admissible multiplier, condition (2) in Definition 1.6 allows us to choose

β = 1
2 + ε when applying this proposition.

Proof. First we suppose ñ > 0. The proof follows the same argument as [44, Section 4]. We note that

the coefficients of the Eisenstein series are not normalized correctly in their Lemma 4.2 (check with [33,
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Lemma 3]). This does not affect [44, Theorem 4.1] since these terms were dropped by positivity.

With the assumptions of Proposition 4.14, for any t ∈ R, using (4.3) and (4.9), the correct lemma is

2π2ñ

|Γ(1− k
2 + it)|2

∑
rj

|ρj(n)|2

ch 2πrj + ch 2πt
+

1

4π

∑
singular a

∫ ∞
−∞

|ρa(n, r)|2dr
ch 2πr + ch 2πt


=

1

4π
+

2ñ

ik+1

∑
N |c>0

S(n, n, c, ν)

c2

∫
L

K2it

(
4πñ

c
q

)
qk−1dq,

where L is the semicircular contour |q| = 1 with Re q > 0 from −i to i. Let K be a large positive real number.

Using [44, Lemma 4.3] we get the full version of [44, (4.3)]:

ñ

∑
rj

|ρj(n)|2hK(rj) +
∑

singular a

∫ ∞
−∞
|ρa(n, r)|2hK(r)dr


� K +

∑
N |c>0

|S(n, n, c, ν)|
c

∣∣∣Mk

(
K,

2πñ

c

) ∣∣∣ (4.21)

where

hK(r) :=

∫ ∞
−∞

e−(t/K)2 − e−(2t/K)2

|Γ(1− k
2 + it)2|(ch 2πr + ch 2πt)

dt

and

M(K,α) =

∫ ∞
−∞

(
e−(t/K)2 − e−(2t/K)2

)∫
(ξ)

sin(πs− πk
2 )

s− k
2

Γ(s+ it)Γ(s− it)α1−2sdsdt.

The right hand side of (4.21) is estimated in [44, Section 4] where we get

ñ

∑
rj

|ρj(n)|2hK(rj) +
∑

singular a

∫ ∞
−∞
|ρa(n, r)|2hK(r)dr


= Oε,N

(
x+ ñβ+εx−2β logβ x

)
.

(4.22)

Observe that hK(r) is even as a function of r and hx(r) � e−π|r|xk−1 when |r| � x. This proves Proposi-

tion 4.14 when ñ > 0.

The ñ < 0 case follows from conjugation by (1.13), (1.14) and (2.17), which is similar to [12, Section 4].

We also require a generalization of [12, Theorem 4.3] which includes the contribution from Eisenstein

series.

Proposition 4.15. Let M be a positive integer which is a multiple of 4. Let

(k, ν′) = (1
2 , (
|D|
· )νθ) or (− 1

2 , (
−|D|
· )νθ) = (− 1

2 , (
|D|
· )νθ),

where D is an even fundamental discriminant dividing M . Suppose that ν is a weight k admissible (Defini-

tion 1.6) multiplier on Γ = Γ0(N) with M , D, ν′ above for some integer B > 0. Let ρj(n) denote the Fourier

coefficients of an orthonormal basis {vj(·)} of L̃k(N, ν). For each singular cusp a, let ρa(n, r) be defined as

in (4.3) corresponding to the Eisenstein series on (Γ0(N), ν). Suppose x ≥ 1.
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For n 6= 0 square-free or coprime to M we have

xk sgn ñ|ñ|

 ∑
|rj |≤x

|ρj(n)|2

chπrj
+

∑
singular a

∫ x

−x

|ρa(n, r)|2

chπr
dr

�ν,ε |ñ|
131
294 +εx3.

In general, for n 6= 0 we factor Bñ = tnu
2
nw

2
n where tn is square-free, un|M∞ and (wn,M) = 1. Then we

have

xk sgn ñ|ñ|

 ∑
|rj |≤x

|ρj(n)|2

chπrj
+

∑
singular a

∫ x

−x

|ρa(n, r)|2

chπr
dr

�ν,ε

(
|ñ| 131294 + un

)
x3|ñ|ε.

The proof of Proposition 4.15 uses Iwaniec’s averaging method as in [12]. One important property is

the relationship between the Fourier coefficients in different levels. This is not hard via the inner product

for Maass cusp forms, but not clear for the continuous spectrum. Here we apply arguments in [48] for the

calculations.

For the remaining part of this section we identify the levels. Let 〈·, ·〉(N) denote the Petersson inner

product over the fundamental domain Γ0(N) \H. For integer q ≥ 1, let wq :=
(√

q 0

0 1/
√
q

)
∈ SL2(R).

Suppose that ν(S) is a weight k = ± 1
2 multiplier on Γ0(S) and ν(T ) is a weight k multiplier on Γ0(T ).

Suppose that there exist positive integers q and T such that

f(z) ∈ Ak(S, ν(S)) ⇒ f(qz) = (f |kwq)(z) ∈ Ak(T, ν(T )). (4.23)

Note that this relation implies qS|T .

For L ∈ {S, T}, let ρ
(L)
j (n) denote the Fourier coefficients of an orthonormal basis {v(L)

j (·)} of L̃k(L, ν(L)).

For each singular cusp a of (Γ0(L), ν(L)), let E
(L)
a (·, s) be the associated Eisenstein series. Let ϕ

(L)
an ( 1

2 + ir)

and ρ
(L)
a (n, r) be defined as in (4.3).

Let V(T )
j (z) = v

(S)
j (qz) and E(T )

a (z, s) = E
(S)
a (qz, s). So V(T )

j and E(T )
a (·, 1

2 + ir) are eigenfunctions

corresponding to the discrete and continuous spectrum of ∆k, respectively. Let n(L) := n− αν(L) for n ∈ Z
and suppose αν(T ) = 0. Then qn(S) ∈ Z and

ρ
(S)
j (n) = P(T )

j (qn(S)) and ρ
(S)
a (n, r) = P(T )

a (qn(S), r), (4.24)

where P(T )
j (n) and P(T )

a (n, r) are the Fourier coefficients of V(T )
j and E(T )

a (·, 1
2 + ir) as in (4.3), respectively.

Since dµ(z) = dxdy
y2 is invariant under GL+

2 (R), we can denote I(S, T ) as the normalizing constant such

that

〈f(q·), g(q·)〉(T ) = I(S, T )〈f, g〉(S), for all f, g ∈ Lk(S, ν(S)).

So I(S, T ) is the index [Γ0(S) : Γ0(T )]. The set{
I(S, T )−

1
2V(T )

j (·) : rj of Γ0(S)
}

is an orthonormal subset in L̃k(T, ν(T )) and can be expand to a orthonormal basis of L̃k(T, ν(T )) as{
V(T )
j (·)

I(S, T )
1
2

: rj of Γ0(S)

}⋃{
w

(T )
j (·) : rj of Γ0(T )

}
, (4.25)

where each w
(T )
j is a linear combination of v

(T )
j from the standard basis. Let the Fourier coefficients of wj be
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denoted as ρcomp
j (n), which is the corresponding linear combination of {ρ(T )

j (n)}j .
For the continuous spectrum, as in [48, (8.1)] we let Er(L) be the finite dimensional space

Er(L) := span{E(L)
a (·, 1

2 + ir) : singular a of (Γ0(L), ν(L))}.

This Er(L) is also the subspace of eigenfunctions in the continuous spectrum of ∆k with eigenvalue λ = 1
4 + r2.

We define the formal inner product

〈·, ·〉Eis
(L) :

〈
E

(L)
a (·, 1

2 + ir), E
(L)
b (·, 1

2 + ir)
〉Eis

(L)
= 4πδ

(L)
ab , (4.26)

where δ
(L)
ab = 1 if cusps a and b are Γ0(L)-equivalent and δ

(L)
ab = 0 otherwise. This inner product is extended

sesquilinearly as a inner product on Er(L), which means it is conjugate linear at the first entry and linear at

the second entry.

Recall (4.4) for the Fourier expansion of Eisenstein series at the cusps. Since E(T )
a (·, 1

2 + ir) = E
(S)
a (q·, 1

2 +

ir) ∈ Er(T ) where a is a singular cusp of Γ0(S), we can write

E(T )
a (z, 1

2 + ir) =
∑

singular b
of Γ0(T )

ca(b)E
(T )
b (z, 1

2 + ir). (4.27)

Let

I(S, T, a) :=
∑

singular b
of Γ0(T )

|ca(b)|2,

then we have 〈
E(T )
a (·, 1

2 + ir), E(T )
a (·, 1

2 + ir)
〉Eis

(T )
= 4πI(S, T, a).

On the other hand, we know that E(T )
a (·, 1

2 + ir) = E
(S)
a (·, 1

2 + ir)|kwq. Then the Fourier expansion of

E(T )
a (·, 1

2 + ir) at the cusp b has a non-zero y
1
2 +ir term, if, and only if, the Fourier expansion of E

(S)
a (·, 1

2 + ir)

at the cusp wqb has a non-zero y
1
2 +ir term. Since E

(T )
b (·, 1

2 + ir) only has non-zero y
1
2 +ir term at the cusps

equivalent to b on Γ0(T ), we can rewrite (4.27) as

E(T )
a (z, 1

2 + ir) =
∑

singular b of Γ0(T )
wqb equivalent to a on Γ0(S)

ca(b)E
(T )
b (z, 1

2 + ir). (4.28)

The above sum is well defined. In fact, if two cusps a1 and a2 are nonequivalent on Γ0(S), then w−1
q a1 and

w−1
q a2 are nonequivalent on Γ0(T ). This is easily verified with (4.23) by qS|T and

γ(T ) ∈ Γ0(T ) ⇒ wqγ
(T )w−1

q ∈ Γ0(S).

Then the sums in (4.28) for E(T )
a1 and E(T )

a2 are on disjoint singular cusps of Γ0(T ).

Therefore, by the orthogonality in Er(T ) with respect to 〈·, ·〉Eis
(T ),〈

E(T )
a1 (·, 1

2 + ir), E(T )
a2 (·, 1

2 + ir)
〉Eis

(T )
= 4πI(S, T, a1)δ

(S)
a1a2 . (4.29)
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Now we can expand the set {
I(S, T, a)−

1
2 E(T )

a (·, 1
2 + ir) : singular a of Γ0(S)

}
to an orthonormal basis of Er(T ) with respect to 〈·, ·〉Eis

(T ) as

{
E(T )
a (·, 1

2 + ir)

I(S, T, a)
1
2

: singular a of Γ0(S)

}⋃{
F

(T )
a (·, 1

2 + ir) : singular a of Γ0(T )
}
, (4.30)

where each F
(T )
a is some linear combination of E

(T )
a . We denote the Fourier coefficients of F

(T )
a as ρcomp

a (n, r)

and ϕcomp
an ( 1

2 + ir) as (4.3), which are corresponding linear combinations of ρ
(T )
a (n, r) or ϕ

(T )
an ( 1

2 + ir).

Recall the standard expansion for h ∈ Bk(T, ν(T )) [35, Theorem 2.1]

h(z) =
∑

rj of Γ0(T )

〈h, v(T )
j 〉(T )v

(T )
j +

∑
singular a
of Γ0(T )

1

4π

∫ ∞
−∞

〈
h,E

(T )
a (·, 1

2 + ir)
〉

(T )
E

(T )
a (·, 1

2 + ir)dr

=: hD(z) + hC(z)

(4.31)

For the discrete spectrum, we have an alternative orthonormal basis (4.25) hence another expansion for hD(z).

For the continuous spectrum, [48, Proposition 8.2] ensures that the above expansion fo hC(z) is invariant with

an alternative basis (4.30) (where we write Young’s notation 〈F, F 〉Eis = 4π explicitly here to be consistent

with our notations). Now we can deduce another expansion for h:

h(z) = hD(z) + hC(z)

=
∑

rj of Γ0(S)

〈
h,

vj(q·)
I(S, T )

1
2

〉
(T )

vj(qz)

I(S, T )
1
2

+
∑

rj of Γ0(T )

〈h,wj〉(T ) wj(z)

+
∑

singular a
of Γ0(S)

1

4π

∫ ∞
−∞

〈
h,
E

(S)
a

(
q·, 1

2 + ir
)

I(S, T, a)
1
2

〉
(T )

E
(S)
a

(
qz, 1

2 + ir
)

I(S, T, a)
1
2

dr

+
∑

singular a
of Γ0(T )

1

4π

∫ ∞
−∞

〈
h, F

(T )
a (·, 1

2 + ir)
〉

(T )
F

(T )
a (z, 1

2 + ir)dr.

(4.32)

We now show that I(S, T, a) = I(S, T ). Let h ∈ Bk(S, ν(S)) be orthogonal to the discrete spectrum, i.e.

hD = 0. The standard spectral expansion of h at level S gives

h(z) = hC(z) =
∑

singular a
of Γ0(S)

1

4π

∫ ∞
−∞

〈
h,E

(S)
a

(
·, 1

2 + ir
)〉

(S)
E

(S)
a

(
z, 1

2 + ir
)
dr.

Especially,

h(qz) =
∑

singular a
of Γ0(S)

1

4π

∫ ∞
−∞

〈
h,E

(S)
a

(
·, 1

2 + ir
)〉

(S)
E

(S)
a

(
qz, 1

2 + ir
)
dr. (4.33)

However, H(·) = h(q·) is in Bk(T, ν(T )) (and is still orthogonal to the discrete spectrum) with spectral

expansion HC(z) as (4.32). As we have shown the orthogonality of (4.30) in Er(T ) under 〈·, ·〉(T )
Eis , the spectral
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expansion of H(·) has to be unique on a subset of the basis (4.30). Comparing (4.33) and (4.32) we have〈
h(q·),

E
(S)
a

(
q·, 1

2 + ir
)

I(S, T, a)

〉
(T )

= 〈h,E(S)
a

(
·, 1

2 + ir
)
〉(S) ⇒ I(S, T, a) = I(S, T ).

Now we are ready to state the formula connecting the Fourier coefficients of different level eigenforms.

For σ = Re s > 1, t ∈ R and n > 0, we compute the inner product〈
U (T )
qn(S)

(·, σ + it
2 ), U (T )

qn(S)

(
·, σ − it

2

)〉
(T )

(4.34)

as [33, Lemma 2]. The results are the same if we apply the above decomposition (4.32) for h(z) =

U
(T )
qn(S)

(z, σ ± it
2 ) and if we apply the standard spectral decomposition (4.31). Recall the notation

Λ(σ + it, σ − it, r) =
∣∣Γ (σ − 1

2 + i(t+ r)
)∣∣2 ∣∣Γ (σ − 1

2 + i(t− r)
)∣∣2 .

For σ > 1, we can get two results of (4.34), as on the right hand side of [33, (30)], by the two different

expansions mentioned above. The following equation is the identity between such two results, where we recall

(4.24) for the relation in Fourier coefficients:∑
rj of Γ0(S)

I(S, T )−1|ρ(S)
j (n)|2Λ

(
σ + it

2 , σ −
it
2 , rj

)
+

∑
singular a
of Γ0(S)

I(S, T )−1

∫ ∞
−∞

|ϕ(S)
an ( 1

2 + ir)|2Λ
(
σ + it

2 , σ −
it
2 , r
)
dr

4nΓ
(

1
2 + k

2 − ir
)

Γ
(

1
2 + k

2 − ir
)

+
∑

rj of Γ0(T )

|ρcomp
j (qn(S))|2Λ

(
σ + it

2 , σ −
it
2 , rj

)
+

∑
singular a
of Γ0(T )

∫ ∞
−∞

|ϕcomp
a,qn(S)

( 1
2 + ir)|2Λ

(
σ + it

2 , σ −
it
2 , r
)
dr

4qn(S) Γ
(

1
2 + k

2 − ir
)

Γ
(

1
2 + k

2 − ir
)

=
∑

rj of Γ0(T )

|ρ(T )
j (qn(S))|2Λ

(
σ + it

2 , σ −
it
2 , rj

)
+

∑
singular a
of Γ0(T )

∫ ∞
−∞

|ϕ(T )
a,qn(S)

( 1
2 + ir)|2Λ

(
σ + it

2 , σ −
it
2 , r
)
dr

4qn(S) Γ
(

1
2 + k

2 − ir
)

Γ
(

1
2 + k

2 − ir
)

(4.35)

With the help of (4.9) on the notations, we have proved a lemma regarding the shifting of levels:

Lemma 4.16. Given T > S > 0 and S|T , with the notations above, for all t ∈ R and σ > 1 we have (4.35).

In addition, with (4.9) we can also write the terms involving ϕa`(
1
2 + ir) as those with ρa(`, r) and we omit

the duplicated formula here.

4.4.1 Proof of Proposition 4.15

We still use superscript ·(N) to identify the level and should be careful on it. The notations ρj and ρa in the

statement of Proposition 4.15 are on level N and among the proof we utilize two more different levels. When

65



Bñ is square-free, [12, Theorem 4.3] gives the bound

xk sgn ñ|ñ|
∑
|rj |≤x

|ρ(N)
j (n)|2

chπrj
�ν,ε |ñ|

131
294 +εx3. (4.36)

Our proposition generalizes the above bound. It suffices to prove the general case involving un with ñ > 0

and k = ± 1
2 , where the ñ < 0 case follows from conjugation by (1.14) and (2.17).

Following the notation in [12, §5.2], we can take the fundamental discriminant D to be even and

M ≡ 0 (mod 8) as a positive integer with D|M . Let P be a positive parameter (chosen later to be n
1
7 ) and

Q = Q(n,M,P ) := {pM : p prime, P < p ≤ 2P, and p - 2nM}.

We take any pM in Q. In [12, p.1698], they require the property that when {v(M)
j } is an orthonormal subset

of L̃k(M,ν′), then {[Γ0(M) : Γ0(pM)]−
1
2 v

(M)
j } is an orthonormal subset of L̃k(pM, ν′). This is easily verified

by the inner product of Maass cusp forms, but we cannot take the inner product of two Eisenstein series. We

will use the discussion above in this section, especially Lemma 4.16, to interpret the estimates between level

M and level pM involving Eisenstein series in detail.

The following lines sketch the proof in [12, Section 5]. Let

Φ(u) :=
1

8

√
π

2
u−

1
2 J 9

2
(u), u ≥ 0.

where Js is the J-Bessel function. We have Φ(0) = Φ′(0) = 0. For s ∈ C, define

Φ̃(s) :=

∫ ∞
0

Js(u)Φ(u)
du

u

and

pΦ(r) :=
i|Γ( 1+k

2 + ir)|2

2π2 shπr

(
Φ̃(2ir) cosπ(k2 + ir)− Φ̃(−2ir) cosπ

(
k
2 − ir

))
.

As in [12, above (5.13)], pΦ(r) > 0 for r ∈ R ∪ i(0, 1
4 ]. At level L = M or pM , define

L(L)
pΦ

(n, n) := 4π|n|
∑
j

|ρ(L)
j (n)|2

pΦ(rj)

chπrj

where the sum runs over the discrete spectrum of ∆k on Γ0(L) and

M(L)
pΦ

(n, n) := 4π|n|
∑
a

1

4π

∫ ∞
−∞
|ρ(L)

a (n, t)|2
pΦ(t)

chπt
dt

where the sum runs over singular cusps of Γ0(M). At level L = N , we define L(N)
pΦ

andM(N)
pΦ

with |n| changed

to |ñ| because αν might be non-zero. Equation [12, before (5.14)] (also [35, Theorem 2.5] as the original

reference)

L(pM)
pΦ

(n, n) +M(pM)
pΦ

(n, n) = e(−k4 )K(pM)
Φ (n, n)−N (pM)

qΦ
(n, n) (4.37)

was used to conclude

L(pM)
pΦ

(n, n) ≤ e(−k4 )K(pM)
Φ (n, n)−N (pM)

qΦ
(n, n)
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by dropping the positive term M(pM)
pΦ

(n, n) and [12, Theorem 4.3] was proved by estimating the average of

the right hand side. Here we must retain this term. Recall the index [Γ0(M) : Γ0(pM)] ≤ p+ 1� P :

Proposition 4.17. With the notations above in this subsection, for pM ∈ Q we have

L(pM)
pΦ

(n, n) +M(pM)
pΦ

(n, n) ≥
L(M)

pΦ
(n, n) +M(M)

pΦ
(n, n)

[Γ0(M) : Γ0(pM)]
�
L(M)

pΦ
(n, n) +M(M)

pΦ
(n, n)

P
. (4.38)

Proof of Proposition 4.17. First we apply (4.35) in Lemma 4.16 with levels M and pM . Here we take q = 1,

ν(S) = ν(T ) = ( |D|· )ν2k
θ for k = ± 1

2 and I(M,pM) = [Γ0(M) : Γ0(pM)] to get

1

[Γ0(M) : Γ0(pM)]

( ∑
rj of Γ0(M)

|ρ(M)
j (n)|2Λ

(
σ + it

2 , σ −
it
2 , rj

)
+

∑
singular a
of Γ0(M)

∫ ∞
−∞

|ϕ(M)
an ( 1

2 + ir)|2Λ
(
σ + it

2 , σ −
it
2 , r
)
dr

4nΓ
(

1
2 + k

2 − ir
)

Γ
(

1
2 + k

2 − ir
) )

+
∑

rj of Γ0(pM)

|ρcomp
j (n)|2Λ

(
σ + it

2 , σ −
it
2 , rj

)
+

∑
singular a
of Γ0(pM)

∫ ∞
−∞

|ϕcomp
an ( 1

2 + ir)|2Λ
(
σ + it

2 , σ −
it
2 , r
)
dr

4nΓ
(

1
2 + k

2 − ir
)

Γ
(

1
2 + k

2 − ir
)

=
∑

rj of Γ0(pM)

|ρ(pM)
j (n)|2Λ

(
σ + it

2 , σ −
it
2 , rj

)
+

∑
singular a
of Γ0(pM)

∫ ∞
−∞

|ϕ(pM)
an ( 1

2 + ir)|2Λ
(
σ + it

2 , σ −
it
2 , r
)
dr

4nΓ
(

1
2 + k

2 − ir
)

Γ
(

1
2 + k

2 − ir
)

(4.39)

Following Proskurin, we multiply a function of t defined by [33, (53)] on both sides of the above formula,

integrate t from 0 to ∞, and pass to the limit σ → 1+. In addition we take the test function ϕ in [33, (34)]

to be our Φ here. What we get simplifies to (see [33, (83)])

1

[Γ0(M) : Γ0(pM)]

(
L(M)

pΦ
(n, n) +M(M)

pΦ
(n, n) + 4πn

∑
rj of Γ0(pM)

|bcomp
j (n)|2

pΦ(rj)

chπrj

+ n
∑

a of Γ0(pM)

∫ ∞
−∞
|bcomp

a (n, r)|2
pΦ(r)

chπr
dr

= L(pM)
pΦ

(n, n) +M(pM)
pΦ

(n, n)

Our notations are consistent with ϕa` in [33], ba(`, r) in [35], and p· in both the references. Since [12, below

(5.13)]
pΦ(r) > 0 for r ∈ R ∪ i(0, 1

4 ],

we can drop the extra terms with superscript “comp” by positivity to get the desired inequality.
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With Proposition 4.17, since |Q| � P
logP , summing (4.37) over Q gives

1

logP

(
L(M)

pΦ
(n, n) +M(M)

pΦ
(n, n)

)
�

∑
pM∈Q

∣∣∣K(pM)
Φ (n, n)

∣∣∣+
∑
pM∈Q

∣∣∣N (pM)
qΦ

(n, n)
∣∣∣. (4.40)

When n is square-free, it was shown in [12, §5.3-5.5] that the right hand side of (4.40) is bounded by

O(n
131
294 +εx3), where P = n

1
7 ⇒ logP � nε.

Next, we will prove the bound on the right hand side of (4.40) when n is not square-free. The estimates

in [12, §5.3-5.4] depend on their Proposition 5.2, which is the only place that requires n to be square-free.

That proposition is a special case of [49, (19)], so we apply the general estimate from Waibel’s paper here.

For µ ∈ {−1, 0, 1}, n ∈ N and x ≥ 1, define

K(N)
µ (n, x) :=

∑
N |c≤x

S(n, n, c, ν)

c
e

(
2µn

c

)
.

Proposition 4.18 ([49, (19)]). Suppose that N ≡ 0 (mod 8), that µ ∈ {−1, 0, 1}, that n > 0 is factorized as

n = tu2w2 where t is square-free, u|N∞ and (w,N) = 1, then∑
Q∈Q
|K(Q)

µ (n, x)| �N,ε

(
xP−

1
2 + xun−

1
2 + (x+ n)

5
8

(
x

1
4P

3
8 + n

1
8x

1
8P

1
4

))
(nx)ε.

Note that in the proof, Waibel chose P to be n
1
7 . By using the above proposition in each place of [12,

§5.3-5.4] where [12, Proposition 5.2] was applied, we obtain new estimates that are recorded here:

[12, (5.19)] �
(
`−

1
2n

3
7 + `−

1
4n

23
56 + `−2u

)
(`n)ε.

[12, (5.22)] �
(
`

11
6 n

3
7 + `

25
12n

23
56 + `

1
3u
)

(`n)ε.

[12, (5.24)] � n
3
7 + 5

6β+ε + n
23
56 + 13

12β+ε + un−
2
3β+ε.

[12, after balancing (5.26)] � n
137
294 +ε + un

1
147 +ε.

[12, (5.28)]
∑
pM∈Q

∣∣∣K(pM)
Φ (n, n)

∣∣∣� n
131
294 +ε + un−

2
147 +ε.

[12, (5.29)]
∑
pM∈Q

∣∣∣N (pM)
qΦ

(n, n)
∣∣∣� n

3
7 +ε + unε.

Based on the last two estimates and (4.40), we derive

L(M)
pΦ

(n, n) +M(M)
pΦ

(n, n)� (n
131
294 + u)nε. (4.41)

Finally we transfer the bound to level N . Apply Lemma 4.16 again with level N and level M , where we

have ν(N) = ν, ν(M) = ν′ = ( |D|· )ν2k
θ , q = B and qn(N) = Bñ. For ` ∈ {m,n}, we factor |B ˜̀| = t`u

2
`m

2
` in

the statement of Proposition 4.15. Here

ρ
(N)
j (n) = ρ

(M)
j (Bñ) and ρ

(N)
a (n, r) = ρ

(M)
a (Bñ, r)

for rj a spectral parameter of ∆k on Γ0(N) and a a singular cusp of (Γ0(N), ν). As in the proof of

Proposition 4.17 above, we integrate (4.35) to a result involving pΦ, drop the extra terms as pΦ(r) > 0 for
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r ∈ R ∪ i(0, 1
4 ], and get

|ñ|

( ∑
rj of Γ0(N)

|ρ(N)
j (n)|2

chπrj
pΦ(rj) +

∑
singular a
of Γ0(N)

1

4π

∫ ∞
−∞

|ρ(N)
a (n, r)|2

chπr
pΦ(r)dr

)

= L(N)
pΦ

(n, n) +M(N)
pΦ

(n, n)�ν L(M)
pΦ

(Bñ,Bñ) +M(M)
pΦ

(Bñ,Bñ)

�ν,ε

(
|Bñ| 131294 + un

)
|Bñ|ε

�ν,ε

(
|ñ| 131294 + un

)
|ñ|ε.

(4.42)

Following from the same argument as [12, §5.5, (5.31-33)], when x ≥ 1, k = ± 1
2 and ñ > 0 we have

pΦ(r)−1 � x3−k for |r| ≤ x

and get Proposition 4.15. When n < 0 it follows from the relationship (1.14) and (2.17).

4.5 Proof of Theorem 1.7, mixed-sign case

In this section we prove Theorem 1.14 in the case m̃ñ < 0. For simplicity let

A(m,n) :=
(
m̃

131
294 + um

) 1
2
(
|ñ| 131294 + un

) 1
2 � |m̃ñ| 131588 + m̃

131
588u

1
2
n + |ñ| 131588u

1
2
m + (umun)

1
2

and

Au(m,n) := A(m,n)
1
4 |m̃ñ| 3

16

� |m̃ñ| 143588 + m̃
143
588 |ñ| 3

16 u
1
8
n + m̃

3
16u

1
8
m|ñ|

143
588 + |m̃ñ| 3

16 (umun)
1
8 .

(4.43)

Moreover, all implicit constants for bounds in this section depend on ν and ε and we drop the subscripts

unless specified. Recall the notations in Settings 4.8 and 4.9. For the exceptional spectrum rj ∈ i(0, 1
4 ] of the

Laplacian ∆k on Γ = Γ0(N), we have 2 Im r∆ ≤ θ assuming Hθ (2.15) by Proposition 4.7 and Im rj has a

positive lower bound t > 0 depending on N .

Proposition 4.19. With the same setting as Theorem 1.7, when 2x ≥ Au(m,n)2, we have

∑
x<c≤2x
N |c

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

(22sj−1 − 1)τj(m,n)
x2sj−1

2sj − 1

�
(
x

1
6 +Au(m,n)

)
|m̃ñx|ε.

(4.44)

We first prove that Proposition 4.19 implies Theorem 1.7. For each j, let ρj(n) denote the coefficients

of an orthonormal basis {vj(·)} of L̃k(N, ν). For each singular cusp a of Γ = Γ0(N), let Ea(·, s) be the

associated Eisenstein series and ρa(n, r) be defined as in (4.3).

Recall the definition of τj(m,n) in Theorem 1.7 and 2 Im rj = 2sj − 1 ∈ (0, 1
2 ] and t > 0 as the lower
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bound of Im rj depending on ν. The sum to be estimated is

∑
N |c≤X

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

τj(m,n)
X2sj−1

2sj − 1
. (4.45)

For rj ∈ i(0, 1
4 ], by Proposition 4.15 we have

τj(m,n)

2sj − 1
� |ρj(m)ρj(n)||m̃ñ|1−sj � A(m,n)|m̃ñ| 12−sj+ε. (4.46)

When X � Au(m,n)2, since A(m,n) ≤ 2|m̃ñ| 14 ,

τj(m,n)
X2sj−1

2sj − 1
� A(m,n)|m̃ñ| 12−sj+εAu(m,n)4sj−2

= A(m,n)sj+
1
2 |m̃ñ| 18− 1

4 sj � Au(m,n).

(4.47)

So in this case we get Theorem 1.7 where the τj terms are absorbed in the errors.

When X ≥ Au(m,n)2, the segment for summing Kloosterman sums on 1 ≤ c ≤ Au(m,n)2 contributes a

Oν,ε(Au(m,n)|m̃ñ|ε) by condition (2) of Definition 1.6. The segment for Au(m,n)2 ≤ c ≤ X can be broken

into no more than O(logX) dyadic intervals x < c ≤ 2x with Au(m,n)2 ≤ x ≤ X
2 and we use Proposition 4.19

for both the Kloosterman sum and the τj terms. In summing dyadic intervals, for each rj ∈ i(0, 1
4 ], we get

dlog2(X/Au(m,n)2)e∑
`=1

(22sj−1 − 1)τj(m,n)

2sj − 1

(
X

2`

)2sj−1

=
τj(m,n)

2sj − 1
X2sj−1

(
1− 2(1−2sj)dlog2(X/Au(m,n)2)e

)
.

The difference between the above quantity and τj(m,n)
X2sj−1

2sj − 1
in (4.45) is

τj(m,n)
X2sj−1

2sj − 1
· 2(1−2sj)dlog2(X/Au(m,n)2)e � τj(m,n)

2sj − 1
Au(m,n)4sj−2 � Au(m,n). (4.48)

by (4.46). In conclusion, for X ≥ Au(m,n)2 we get

∑
N |c≤X

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

τj(m,n)
X2sj−1

2sj − 1

=
∑

Au(m,n)2<c≤X

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

τj(m,n)
X2sj−1

2sj − 1
+O(Au(m,n)|m̃ñ|ε)

=

dlog2(X/Au(m,n)2)e∑
`=1

 ∑
X

2`
<c≤ X

2`−1

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

(22sj−1 − 1)τj(m,n)

2sj − 1

(
X

2`

)2sj−1


+O(Au(m,n)|m̃ñ|ε)

�
(
X

1
6 +Au(m,n)

)
|m̃ñX|ε
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where the second equality follows from (4.48) and the last inequality is by Proposition 4.19.

It remains to prove Proposition 4.19. For rj ∈ i(0, 1
4 ], by Proposition 4.15 we have√

|m̃ñ| ρj(m)ρj(n)� A(m,n)|m̃ñ|ε.

Applying Lemma 4.13 where 2tj = 2 Im rj = 2sj − 1, recalling the definition of τj in Theorem 1.7 and

a = 4π
√
|m̃ñ| in Setting 4.8, we get

2ik·4
√
|m̃ñ| ρj(m)ρj(n)

chπrj
φ̌(rj)

= (22sj−1 − 1)τj(m,n)
x2sj−1

2sj − 1
+O

(
A(m,n)|m̃ñ|ε

(
|m̃ñ|−tjx2tj−δ + 1

))
.

(4.49)

The error term is O(A(m,n)|m̃ñ|ε) when 2tj ≤ δ and is O(x
1
2−δ|m̃ñ|ε) when tj = 1

4 . Thanks to Proposition 4.7

we can choose δ > θ (δ = 1
3 >

7
64 in the end) and tj <

1
4 implies 2tj ≤ θ < δ. With the help of (4.49) we

break up the left hand side of (4.44) as∣∣∣∣∣∣∣∣
∑

x<c≤2x
N |c

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

(22sj−1 − 1)τj(m,n)
x2sj−1

2sj − 1

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑

x<c≤2x
N |c

S(m,n, c, ν)

c
−
∑
N |c>0

S(m,n, c, ν)

c
φ
(a
c

)∣∣∣∣∣∣∣∣+O
((
x

1
2−δ +A(m,n)

)
|m̃ñ|ε

)

+

∣∣∣∣∣∣
∑
N |c>0

S(m,n, c, ν)

c
φ
(a
c

)
− 8ik

√
|m̃ñ|

∑
rj∈i(0, 14 ]

ρj(m)ρj(n)

chπrj
φ̌(rj)

∣∣∣∣∣∣
=: S1 +O

((
x

1
2−δ +A(m,n)

)
|m̃ñ|ε

)
+ S2.

(4.50)

Recall T � x1−δ. The first sum S1 above can be estimated by condition (2) of Definition 1.6 as

S1 ≤
∑

x−T≤c≤x
2x≤c≤2x+2T

N |c

|S(m,n, c, ν)|
c

�δ,ε x
1
2−δ|m̃ñx|ε

(4.51)

We then prove a bound for S2. Following from the trace formula (4.8),

S2 = 8
√
|m̃ñ|

∣∣∣∣∣∣
∑
rj≥0

ρj(m)ρj(n)

chπrj
φ̌(rj) +

∑
singular a

1

4π

∫ ∞
−∞

ρa (m, r)ρa (n, r)
φ̌(r)

chπr
dr

∣∣∣∣∣∣ .
When estimating S2, we focus on the discrete spectrum rj ≥ 0, because the bounds provided by

Proposition 4.14 and Proposition 4.15 for rj ∈ I for any interval I are the same as those provided for for

|r| ∈ I in the continuous spectrum. For r ∈ [0, 1), we apply Proposition 4.15, (4.14) and (4.15) to get

√
m̃|ñ|

∑
r∈[0,1)

∣∣∣∣∣ρj(m)ρj(n)

chπrj
φ̌(rj)

∣∣∣∣∣� A(m,n)|m̃ñ|ε. (4.52)

71



For r ∈ [1, a8x ), we apply Proposition 4.15 and (4.16) with φ̌(r)� e−
r
2 . Since

S(R) :=
√
m̃|ñ|

∑
r∈[1,R]

∣∣∣∣∣ρj(m)ρj(n)

chπrj

∣∣∣∣∣� A(m,n)R3|m̃ñ|ε (4.53)

by Cauchy-Schwarz, we have

√
m̃|ñ|

∑
r∈[1, a8x )

∣∣∣∣∣ρj(m)ρj(n)

chπrj
φ̌(rj)

∣∣∣∣∣�√
m̃|ñ|

∑
r∈[1, a8x )

∣∣∣∣∣ρj(m)ρj(n)

chπrj

∣∣∣∣∣ e− rj2
� e−

r
2S(r)

∣∣∣ a8x
r=1

+

∫ a
8x

1

S(r)e−
r
2 dr

� A(m,n)|m̃ñx|ε
(

1 +

∫ a
8x

1

e−
r
2 r3dr

)
� A(m,n)|m̃ñx|ε.

(4.54)

For r ∈ [ a8x ,
a
x ), we apply Proposition 4.14 on m̃, Proposition 4.15 on ñ and (4.16) with φ̌(r)� 1

r �
x
a to

get

√
m̃|ñ|

∑
a
8x≤r<

a
x

∣∣∣∣∣ρj(m)ρj(n)

chπrj
φ̌(rj)

∣∣∣∣∣
�
(a
x

+ m̃
1
4

)(a
x

) 1
2
(
|ñ| 131294 + un

) 1
2 |m̃ñx|ε

�
(
A(m,n)

(a
x

) 3
2

+ m̃
1
4

(
|ñ| 131294 + un

) 1
2
(a
x

) 1
2

)
|m̃ñx|ε.

(4.55)

Exchanging the propositions applied on m̃ and ñ gives a symmetric estimate. These two estimates conclude

√
m̃|ñ|

∑
a
8x≤r<

a
x

∣∣∣∣∣ρj(m)ρj(n)

chπrj
φ̌(rj)

∣∣∣∣∣
�
(a
x

) 1
2

{
A(m,n)

a

x
+ min

(
m̃

1
4

(
|ñ| 131294 + un

) 1
2

, |ñ| 14
(
m̃

131
294 + um

) 1
2

)}
|m̃ñx|ε

�
(
A(m,n)

(a
x

) 3
2

+ |m̃ñ| 18A(m,n)
1
2

(a
x

) 1
2

)
|m̃ñx|ε.

(4.56)

where in the last inequality we applied min(B,C) ≤
√
BC and the definition of A(m,n) at the beginning of

this subsection.

Let

P (m,n) := 2|m̃ñ| 18A(m,n)−
1
2 ≥ 1.

Divide r ≥ max(ax , 1) into two parts: max
(
a
x , 1
)
≤ r < P (m,n) and r ≥ max

(
a
x , 1, P (m,n)

)
. We apply
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Proposition 4.15 on the first range and (4.16) with φ̌(r)� r−
3
2 to get

√
m̃|ñ|

∑
max( ax ,1)≤rj<P (m,n)

∣∣∣∣∣ρj(m)ρj(n)

chπrj
φ̌(rj)

∣∣∣∣∣
�
√
m̃|ñ|

∑
max( ax ,1)≤rj<P (m,n)

∣∣∣∣∣ρj(m)ρj(n)

chπrj

∣∣∣∣∣ r− 3
2

� r−
3
2S(r)

∣∣∣P (m,n)

r=max( ax ,1)
+

∫ P (m,n)

max( ax ,1)

r−
5
2S(r)dr

� |m̃ñ| 3
16A(m,n)

1
4 |m̃ñx|ε

(4.57)

by partial summation. We divide the second range into dyadic intervals C ≤ rj < 2C and apply Proposi-

tion 4.14 and (4.16) with φ̌(r)� min(r−
3
2 , r−

5
2
x
T ) to get

√
m̃|ñ|

∑
C≤rj<2C

∣∣∣∣∣ρj(m)ρj(n)

chπrj
φ̌(rj)

∣∣∣∣∣
� min

(
C−

3
2 , C−

5
2
x

T

)(
C2 + (m̃

1
4 + |ñ| 14 )C + |m̃ñ| 14

)
|m̃ñx|ε

�
(

min
(
C

1
2 , C−

1
2
x

T

)
+ (m̃

1
4 + |ñ| 14 )C−

1
2 + |m̃ñ| 14C− 3

2

)
|m̃ñx|ε.

(4.58)

Next we sum over dyadic intervals. For the first term min(C
1
2 , C−

1
2
x
T ), when

min
(
C

1
2 , C−

1
2
x

T

)
= C

1
2 :

∑
j≥1: 2jC= x

T

C≥P (m,n)

C
1
2 ≤

∞∑
j=1

2−
j
2

( x
T

) 1
2 �

( x
T

) 1
2

,

and when

min
(
C

1
2 , C−

1
2
x

T

)
= C−

1
2
x

T
:

∑
j≥0: C=2j xT

C−
1
2
x

T
≤
∞∑
j=0

2−
j
2

( x
T

) 1
2 �

( x
T

) 1
2

.

So after summing up from (4.58) and recalling T � x1−δ in Setting 4.8, we have

√
m̃|ñ|

∑
rj≥max( ax ,1,P (m,n))

∣∣∣∣∣ρj(m)ρj(n)

chπrj
φ̌(rj)

∣∣∣∣∣
�
(( x

T

) 1
2

+ (m̃+ |ñ|) 1
4 |m̃ñ|− 1

16A(m,n)
1
4 + |m̃ñ| 1

16A(m,n)
3
4

)
|m̃ñx|ε

�
(
x
δ
2 + |m̃ñ| 3

16A(m,n)
1
4

)
|m̃ñx|ε,

(4.59)

where the last inequality is by |m̃ñ| 14 � A(m,n). Combining (4.57) and (4.59) we have

√
m̃|ñ|

∑
r≥max( ax ,1)

∣∣∣∣∣ρj(m)ρj(n)

chπrj
φ̌(rj)

∣∣∣∣∣ � (
x
δ
2 +Au(m,n)

)
|m̃ñx|ε. (4.60)

Proof of Proposition 4.19. Clearly Au(m,n) ≥ A(m,n). Combining (4.50), (4.51), (4.52), (4.54), (4.56), and
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(4.60) we get

∑
x<c≤2x
N |c

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

(22sj−1 − 1)τj(m,n)
x2sj−1

2sj − 1

�
(
x

1
2−δ +Au(m,n) +A(m,n)

(a
x

) 3
2

+ |m̃ñ| 18A(m,n)
1
2

(a
x

) 1
2

+ x
δ
2

)
|m̃ñx|ε.

(4.61)

Since 2x ≥ Au(m,n)2 by assumption, we have

a

x
� |m̃ñ| 18A(m,n)−

1
2 ,

which implies both

A(m,n)
(a
x

) 3
2 � Au(m,n) and |m̃ñ| 18A(m,n)

1
2

(a
x

) 1
2 � Au(m,n). (4.62)

Taking δ = 1
3 we get the desired bound.
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Chapter 5

Sums of Kloosterman sums: uniform

bounds, same-sign case

In this chapter we prove the complementary case m̃ñ > 0 in Theorem 1.7. The difference of the proof in this

chapter from the previous one is due to the difference between Theorem 5.1 and Theorem 4.10.

5.1 Kuznetsov trace formula in the same-sign case

Let k ∈ Z + 1
2 , N be a positive integer, and a be a singular cusp for the weight k multiplier system ν on

Γ = Γ0(N). Recall the definition of the Eisenstein series associated to a in (4.1). For m > 0, recall the

definition of Poincaré series (4.2). Recall the Fourier expansion of the Poincaré series in (4.5) and of the

Eisenstein series in (4.3).

Suppose m and n are positive integers and recall the definition of α∞ in 1.11. Recall Setting 4.8 and

Setting 4.9. In this chapter, we need the following transformations of φ:

φ̃(r) =

∫ ∞
0

Jr−1(u)φ(u)
du

u
(5.1)

and for k ≥ 0,

pφ(r) := π2e
(1+k)πi

2

∫∞
0

(
cos(kπ2 + πir)J2ir(u)− cos(kπ2 − πir)J−2ir(u)

)
φ(u)duu

sh(πr)(ch(2πr) + cosπk)Γ( 1
2 −

k
2 + ir)Γ( 1

2 −
k
2 − ir)

(5.2)

with the corrected version of [42, (2.12)]

pφ
(
i
4

)
=

 e
πi
4

∫∞
0

cos(u)φ(u)u−
3
2 du k = 1

2 ,

1
2e

3πi
4

∫∞
0

sin(u)φ(u)u−
3
2 du k = 3

2 .
(5.3)

For an integer l ≥ 1, let Bl denote an orthonormal basis for the space of holomorphic cusp forms

Sk+2l(N, ν) and

Bk :=

∞⋃
l=1

Bl.
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Suppose that the Fourier expansion of each F ∈ Bk is given by

F (z) :=

∞∑
n=1

aF (n)e(ñz). (5.4)

Let wF denote the weight of F ∈ Bk. Here is the trace formula:

Theorem 5.1 ([33, §6]). Suppose ν is a multiplier system of weight k = 1
2 or 3

2 on Γ. Let {vj(·)} be an

orthonormal basis of L̃k(N, ν) and Ea(·, s) be the Eisenstein series associated to a singular cusp a. Let ρj(n)

denote the n-th Fourier coefficient of vj. Let ϕan( 1
2 + ir) or ρa(n, r) denote the n-th Fourier coefficient of

Ea(·, 1
2 + ir) as in (4.3). Let Bk and aF (n) be defined as in (5.4). Then for m̃ > 0 and ñ > 0 we have

∑
c>0

S(m,n, c, ν)

c
φ

(
4π
√
m̃ñ

c

)
= Uk +W +

∑
singular a

Ea, (5.5)

where

Uk =
∑
F∈Bk

4Γ(wF )eπiwF /2

(4π)wF (m̃ñ)(wF−1)/2
aF (m)aF (n)φ̃(wF ),

W = 4
√
m̃ñ

∑
rj

ρj(m)ρj(n)

chπrj
pφ(rj),

and

Ea =

∫ ∞
−∞

(
m̃

ñ

)−ir ϕam

(
1
2 + ir

)
ϕan

(
1
2 + ir

)
pφ(r)dr

chπr |Γ( 1
2 + k

2 + ir)|2

= 4
√
m̃ñ · 1

4π

∫ ∞
−∞

ρa (m, r)ρa (n, r)
pφ(r)

chπr
dr.

Remark. We clarify two points in the theorem.

(1) In the term Uk corresponding to holomorphic cusp forms, each function F ∈ Bk has weight wF =

k + 2l ≥ 5
2 .

(2) The equality of the two expressions in Ea is by (4.3):√
ñ

π
ρa(n, r) =

e−
πik
2 πirñir

Γ
(

1
2 + ir + k

2 sgn ñ
)ϕan

(
1

2
+ ir

)
.

5.1.1 Properties of admissible multipliers

Suppose ν is a weight k admissible multiplier system on Γ = Γ0(N) (Definition 1.6) with parameters B, M

and D. Besides Proposition 4.7, we also have:

Proposition 5.2. Suppose that ν satisfies condition (1) of Definition 1.6 with ν′ = ( |D|· )ν2k
θ . For l ∈ Z, let

K = k + 2l ≥ 5
2 . Suppose {Fj,l(·)}j is an orthonormal basis of SK(N, ν) and {Gj,l(·)}j is an orthonormal

basis of SK(M,ν′). Denote aF,j,l(n) as the Fourier coefficient of Fj,l and aG,j,l(n) as the Fourier coefficient

of Gj,l. Then we have
dimSK(N,ν)∑

j=1

|aF,j,l(n)|2 �N,ν

dimSK(M,ν′)∑
j=1

|aG,j,l(Bñ)|2. (5.6)
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Proof. By condition (1) of Definition 1.6, we know that{
[Γ0(N) : Γ0(M)]−

1
2Fj,l(Bz) : 1 ≤ j ≤ dimSK(N, ν)

}
(5.7)

is an orthonormal subset of SK(M,ν′). Since the left hand side of (2.6) is independent from the choice of

basis, we expand (5.7) to an orthonormal basis of SK(M,ν′) and get the result.

Now we start to prove a bound for the right hand side of (5.6). First we have

Proposition 5.3 ([49, Theorem 1]). For K ∈ Z+ 1
2 , K ≥ 5

2 and a quadratic character χ modulo M , suppose{
Φj =

∞∑
n=1

aj(n)e(nz) : 1 ≤ j ≤ d := dimSK(M,χν2K
θ )

}

is an orthonormal basis of SK(M,χν2K
θ ). For n ≥ 1, write n = tu2w2 with t square-free, u|M∞ and

(w,M) = 1. Then we have

Γ(K − 1)

(4πn)K−1

d∑
j=1

|aj(n)|2 �K,M,ε

(
n

3
7 + u

)
nε.

Note that the implied constant in the bound above depends on K when expressing Bessel functions (see

[49, after (8)] and [50, Theorem 1 and p. 400]). For our proof, it is essential that the bound remains uniform

across the weights. We modify the estimate and get the following proposition.

Proposition 5.4. With the same setting as Proposition 5.3,

Γ(K − 1)

(4πn)K−1

d∑
j=1

|aj(n)|2 �M,ε (n
19
42 + u)nε.

Proof. We do the same preparation as [49, around (8)] to estimate the right hand side of (2.6). Let

P > 1 + (log 2nM)2 (finally chosen to be �M n
1
7 ) and define the set of prime numbers

P := {p prime : P < p ≤ 2P, p - 2nM}.

Here we have #P � P/ logP .

For {Φj}j a orthonormal basis of SK(M,χν2K
θ ), the set {[Γ0(M) : Γ0(pM)]−

1
2 Φj}j is an orthonormal

subset of SK(pM,χν2K
θ ). Recall (2.6) and we have

Γ(K − 1)

(4πn)K−1

d∑
j=1

|aj(n)|2

[Γ0(M) : Γ0(pM)]
≤ 1 + 2πi−K

∑
pM |c

S(n, n, c, χν2K
θ )

c
JK−1

(
4πn

c

)
. (5.8)

For those p ∈ P, [Γ0(M) : Γ0(pM)] ≤ p+ 1. Summing (5.8) on p ∈ P and dividing #P we get

Γ(K − 1)

(4πn)K−1

d∑
j=1

|aj(n)|2 � P + (logP )
∑
p∈P

∣∣∣∣∣∣
∑
pM |c

S(n, n, c, χν2K
θ )

c
JK−1

(
4πn

c

)∣∣∣∣∣∣ . (5.9)
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The average estimate of

K
(µ)
pM (x) :=

∑
pM |c≤x

S(n, n, c, χν2K
θ )√

c
e

(
2µn

c

)
, µ ∈ {−1, 0, 1}

can be found in [49, (19)] that for µ ∈ {−1, 0, 1},∑
p∈P
|K(µ)

pM (x)| �M,ε

(
xun−

1
2 + xP−

1
2 + (x+ n)

5
8

(
x

1
4P

3
8 + n

1
8x

1
8P

1
4

))
(nx)ε. (5.10)

We break the sum on c ≡ 0 (mod pM) at the right hand side of (5.9) into c ≤ n and c ≥ n to estimate. The

uniform bound of J-Bessel functions is given by [51]

|Jβ(x)| ≤ c0x−
1
3 for all β > 0 and x > 0, (5.11)

where c0 = 0.7857 · · · .
When c ≤ n, using (5.11) and [31, (10.6.1)]

2J ′β−1(x) = Jβ−2(x)− Jβ(x),

we find that (
x−

1
2 JK−1

(
4πn

x

))′
� n−

1
3x−

7
6 + n

2
3x−

13
6 . (5.12)

Then a partial summation using (5.10), (5.12) and (5.11) yields

∑
p∈P

∣∣∣∣∣∣
∑

pM |c≤n

S(n, n, c, χν2K
θ )

c
JK−1

(
4πn

c

)∣∣∣∣∣∣�M,ε (n
19
42 + u)nε. (5.13)

When c ≥ n, we get another bound(
x−

1
2 JK−1

(
4πn

x

))′
� nx−

5
2 for x ≥ n (5.14)

by |Jβ−1(x)| ≤ (x/2)β−1

Γ(β) [31, (10.14.4)] and |Jβ(x)| ≤ 1 [31, (10.14.1)]. Remember K ≥ 5
2 here. We do a

partial summation again using (5.10) and (5.14) and get

∑
p∈P

∣∣∣∣∣∣
∑

pM |c≥n

S(n, n, c, χν2K
θ )

c
JK−1

(
4πn

c

)∣∣∣∣∣∣�M,ε (n
3
7 + u)nε. (5.15)

From (5.13), (5.15), (5.9) and P �M n
1
7 , we finish the proof.

Combining Proposition 5.2 and Proposition 5.4, one observes the following bound:

Proposition 5.5. With the same setting as Proposition 5.2, we factor Bñ = tnu
2
nw

2
n with tn square-free,
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un|M∞ and (wn,M) = 1. Then

Γ(K − 1)

(4πñ)K−1

dimSK(N,ν)∑
j=1

|aF,j,l(n)|2 �N,ν,ε (ñ
19
42 + un)ñε.

5.2 Bounds on φ̃ and pφ

In this section, all of the implied constants among the estimates for φ̃ and pφ depend on N and the multiplier

system ν unless specified. Recall the definitions (5.1) and (5.2). To deal with the Γ-function in the denominator

of pφ, we need [31, (5.6.6-7)]

Γ(x)2

ch(πr)
≤ |Γ(x+ ir)|2 ≤ Γ(x)2 for x ≥ 0 and r ∈ R. (5.16)

Recall (5.1) and (5.2) that we define pφ for k ≥ 0. We also have

pφ(r) =
π2e

1+k
2 πi

sh(πr)(ch(2πr) + cos(πk))Γ( 1
2 −

k
2 + ir)Γ( 1

2 −
k
2 − ir)

·
{

cos kπ2 ch(πr)
(
φ̃(1 + 2ir)− φ̃(1− 2ir)

)
− i sin kπ

2 sh(πr)
(
φ̃(1 + 2ir) + φ̃(1− 2ir)

)}
.

(5.17)

Like [44, after (5.3)], we define ξk as

ξk(r) :=
2iπ2e

1+k
2 πi

Γ( 1
2 −

k
2 + ir)Γ( 1

2 −
k
2 − ir)

. (5.18)

Then

ξk(r)

{
� 1 for r ∈ [−1, 1],

� |r|keπ|r| for r ∈ (−∞,−1] ∪ [1,∞).
(5.19)

We refer to [52] for estimates on J-Bessel functions. Denote

Fµ(z) :=
Jµ(z) + J−µ(z)

2 cos(µπ/2)
, Gµ(z) :=

Jµ(z)− J−µ(z)

2 sin(µπ/2)
.

As a result of the relationship J2ir(u) = J−2ir(u) for r, u ∈ R by [31, (10.11.9)], we have

F2ir(u) =
Re J2ir(u)

ch(πr)
∈ R, G2ir(u) =

Im J2ir(u)

sh(πr)
∈ R.

Moreover, for k ∈ Z + 1
2 and k ≥ 0,

pφ(r) =
ξk(r) ch(πr)

ch(2πr)

∫ ∞
0

(
G2ir(u) cos

kπ

2
− F2ir(u) sin

kπ

2

)
φ(u)

u
du (5.20)

and pφ(r) = pφ(−r) for r ∈ R because Fµ(z) = F−µ(z) and Gµ(z) = G−µ(z).
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Lemma 5.6. For r ∈ [−1, 1], uniformly and with absolute implied constants we have

G2ir(u)�

 ln(u2 ), u ∈ [0, 3
2 ],

u−
3
2 , u ∈ [ 3

2 ,∞).
(5.21)

Proof. First we deal with the range u ∈ [0, 3
2 ]. The series expansion of Gir is given by [52, (3.9), (3.16)]:

G2ir(u) =

(
4r ch(πr)

π sh(πr)

) 1
2
∞∑
`=0

(−1)`(u2/4)` sin(2r ln(u/2)− φ2r,`)

`!
∏`2

j=0(j + 4r2)1/2

=

(
ch(πr)

πr sh(πr)

) 1
2

sin
(

2r ln
(u

2

)
− φ2r,0

)
+O

((u
2

)2
)
.

where φr,` = arg Γ(1 + `+ ir). The implied constant in the second equation is absolute. As a function of r,

φ2r,0 ∈ C∞[0, 1] and limr→0 φ2r,0 = 0. Then φ2r,0/r = O(1) and

G2ir(u)� r−1O
(∣∣∣2r ln

(u
2

)∣∣∣+ |φ2r,0|
)

+O

((u
2

)2
)

� ln
(u

2

)
+O(1).

For the range u ≥ 3
2 , we check with [52, (5.16)] where Us(p) for s ≥ 0 are fixed polynomials of p whose

lowest degree term is ps:

G2ir(u) =

(
4/π2

4r2 + u2

) 1
4
(

C√
4r2 + u2

+O

(
1

4r2 + u2

))
�
(
r2 +

u2

4

)− 3
4

+O

((
r2 +

u2

4

)− 5
4

)
.

Our claimed bound is clear as r2 ≥ 0. The implied constant above is absolute due to [52, (3.3)] and [53,

Chapter 8, §13] or by [53, Chapter 10, (3.04)].

Lemma 5.7. For r ∈ [−1, 1], we have

|φ̃(1 + 2ir)| � 1, |pφ(r)| �ε (ax)ε. (5.22)

Proof. A trivial bound of J2ir is given by the integral representation [31, (10.9.4)]:

Jν(z) =
(z/2)ν

√
πΓ(ν + 1

2 )

∫ π

0

cos(z cos θ)(sin θ)2νdθ, Re ν > −1

2
.

Then we have |J2ir(u)| ≤
√
π

|Γ( 1
2 +2ir)| and

|φ̃(1 + 2ir)| �
∫ 3a

2x

3a
8x

du

u
≤ ln 4 for r ∈ [−1, 1].
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This implies that

ch(πr)

∫ ∞
0

F2ir(u)
φ(u)

u
du� 1 for r ∈ [−1, 1].

Let the closed interval [α, β] = ∅ when α > β. With the help of (5.20), (5.19) and Lemma 5.6 we get

|pφ(r)| � ch(πr)

ch(2πr)

(∣∣∣∣∫ ∞
0

G2ir(u)φ(u)
du

u

∣∣∣∣+

∣∣∣∣∫ ∞
0

F2ir(u)φ(u)
du

u

∣∣∣∣)
�
∫

[ 3a8x ,
3
2 ]

ln
(u

2

) du
u

+

∫
[ 32 ,

3a
2x ]

u−
5
2 du+O(1)

�
(

ln
3a

16x

)2

+O(1)� (ax)ε.

The last inequality is because a = 4π
√
m̃ñ > 0 has a lower bound depending on ν.

When we focus on the exceptional eigenvalues λj ∈ [ 3
16 ,

1
4 ) of ∆k, recall that λj = 1

4 + r2
j for rj ∈ i(0, 1

4 ].

By Proposition 4.7, if we write tj = Im rj , assuming Hθ (2.15) we have an upper bound tj ≤ θ
2 when rj 6= i

4 .

Moreover, since the exceptional eigenvalues are discrete, we also have a largest eigenvalue less than 1
4 , hence

a lower bound t > 0 (depending on N and ν) such that tj ≥ t.

Lemma 5.8. With the hypothesis Hθ (2.15) for θ ≤ 1
6 , when r = it and t ∈ [t, θ2 ], we have

φ̃(1± 2t)�
(a
x

)±2t

and pφ(r)�
(a
x

)2t

+
(x
a

)2t

�
(a
x

)θ
+
(x
a

)θ
. (5.23)

Moreover, for r = i
4 we have

φ̃

(
1± 1

2

)
�
(a
x

)± 1
2

and pφ

(
i

4

)
�

 (xa )
1
2 , k = 1

2 ,

(ax )
1
2 , k = 3

2 .
(5.24)

Proof. As in the previous lemma, when t ∈ [t, θ2 ], the bound [31, (10.9.4)] gives

|J±2t(u)| � u±2t

Γ( 1
2 − θ)

and |φ̃(1± 2t)| �
∫ 3a

2x

3a
8x

u±2t du

u
�
(a
x

)±2t

.

The bound for pφ follows from (5.17). When r = i
4 , by [31, (10.16.1)] we have

J− 1
2
(u)� u−

1
2 and J 1

2
(u)� u−

1
2 sinu ≤ u 1

2 .

The bounds for φ̃(1± 1
2 ) and pφ( i4 ) follow from the same process above with (5.1) and (5.3).

For the range |r| ≥ 1 we have

Lemma 5.9. [44, Lemma 6.3] Let k = 1
2 or 3

2 . Then

pφ(r)�

{
rk−

3
2 , r ≥ 1,

rk min(r−
3
2 , r−

5
2
x
T ), r ≥ max(ax , 1).

(5.25)

Remark. In the original paper they stated the result for k = ± 1
2 . However, the power rk in the estimate

above only arises from ξk(r)e−π|r| (5.18) and by (5.19) we get the above lemma for weight k = 3
2 .
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5.2.1 A special test function

Here we choose the special test function φ again which satisfies Setting 4.9 to compute the terms corresponding

to the exceptional spectrum r ∈ i(0, 1
4 ] in Theorem 1.7. However, in this case we focus on weight k = 1

2 or 3
2 .

Let λ ∈ [ 3
16 ,

1
4 ) be an exceptional eigenvalue of ∆k on Γ0(N), we set λ = s(1− s) for s ∈ ( 1

2 ,
3
4 ] and

t = Im r =
√

1
4 − λ =

√
1
4 − s(1− s) = s− 1

2 .

Since the exceptional spectrum is discrete, let the lower bound for t > 0 be t depending on N and ν. Recall

Setting 4.8. Let 0 < T ′ ≤ T ≤ x
3 be T ′ := Tx−δ � x1−2δ. We choose φ as in Setting 4.12.

Now we take r = it ∈ i(0, 1
4 ]. When u ≤ 1.999, by the series expansion [31, (10.2.2)]:

Jν(z) =
(z

2

)ν ∞∑
j=0

(−1)j

j!Γ(j + 1 + ν)

(z
2

)2j

,

we have

J±2t(u) =
(u/2)±2t

Γ(1± 2t)
+O

((u
2

)2±2t
)
, 0 < u ≤ 1.999. (5.26)

The implied constant is absolute. Now we compute the bound for φ̃ and pφ.

Lemma 5.10. Assuming Hθ (2.15) for θ ≤ 1
6 and with the choice of φ in Setting 4.12, when r = it ∈ i(0, 1

4 ],

φ̃(1− 2t) =
1

Γ(1− 2t)

∫ a
x

a
2x

(u
2

)−2t φ(u)

u
du+O

(
a−2tx2t−δ + 1

)
=

22t(22t − 1)

2tΓ(1− 2t)

(x
a

)2t

+O
(
a−2tx2t−δ + 1

)
,

(5.27)

Proof. When 1.999 < a
x−T ≤

3a
2x , we get x� a and φ̃(1− 2t) = O(1) by Lemma 5.8, so the lemma is true in

this case. When a
x−T ≤ 1.999, we have a� x and with (5.26),

φ̃(1− 2t) =

∫ ∞
0

(u/2)−2t

Γ(1− 2t)

φ(u)

u
du+O

(∫ ∞
0

(u
2

)2−2t φ(u)

u
du

)
=

22t

Γ(1− 2t)

∫ a
x

a
2x

u−2t−1du+
22t

Γ(1− 2t)

(∫ a
2x

a
2x+2T

+

∫ a
x−T

a
x

)
u−2t−1φ(u)du

+O

(∫ ∞
0

u1−2tφ(u)du

)
=:

22t(22t − 1)

2tΓ(1− 2t)

(x
a

)2t

+ (I1 + I2) +O(I3).

Recall that we always have the lower bound t > 0 for t = Im r. A bound for I1 and I2 follows from the same

process as [14, Proof of Lemma 7.2]:

I1 + I2 �

(∫ a
2x

a
2x+2T

+

∫ a
x−T

a
x

)
u−2t−1φ(u)du� a−2tx2t−δ.
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We also get

I3 �
∫ 3a

2x

3a
8x

u1−2tdu�
(a
x

)2−2t

� 1

and finish the proof.

Lemma 5.11. Assume Hθ (2.15) for θ ≤ 1
6 . For r = it ∈ i(0, θ2 ] we have

pφ(r) =
e
kπi
2 cos(πt)Γ( 1

2 + k
2 + t)Γ(2t)

Γ( 1
2 −

k
2 + t)22tπ2t(m̃ñ)t

· (22t − 1)x2t

2t
+O

(
x2t−δ

a2t
+
a2t

x2t
+ 1

)
.

Moreover,

pφ( i4 ) =

 2e
πi
4 (
√

2− 1)(xa )
1
2 +O(x−δ(xa )

1
2 + 1) for k = 1

2 ,

e
3πi
4 (1− 1√

2
)(ax )

1
2 +O(x−δ(ax )

1
2 + 1) for k = 3

2 .

The implied constants only depend on N and ν.

Proof. When t ∈ [t, θ2 ], we substitute Lemma 5.10 into (5.2) and use Lemma 5.8 to get

pφ(it) =
iπ2e

kπi
2

(
cos(kπ2 − πt)φ̃(1− 2t)− cos(kπ2 + πt)φ̃(1 + 2t)

)
i sin(πt) cos(2πt)Γ( 1

2 −
k
2 − t)Γ( 1

2 −
k
2 + t)

=
π2e

kπi
2 cos(kπ2 − πt)2

2t(22t − 1)(x/a)2t

sin(πt) cos(2πt)Γ( 1
2 −

k
2 − t)Γ( 1

2 −
k
2 + t)2tΓ(1− 2t)

+O

(
x2t−δ

a2t
+
a2t

x2t
+ 1

)
.

With the help of the functional equation of the Γ function

Γ(z)Γ(1− z) =
π

sin(πz)
for z ∈ C \ Z

and the trigonometric identities

sin(π2 − x) = cosx, 2 cosx cos y = cos(x+ y) + cos(x− y) for x, y ∈ R,

we have

π

sin(πt)Γ(1− 2t)
= 2 cos(πt)Γ(2t),

π

Γ( 1
2 −

k
2 − t)

= Γ( 1
2 + k

2 + t) cos(kπ2 + πt),

and 2 cos(kπ2 − πt) cos(kπ2 + πt) = cos(2πt).

Then the first part of the lemma follows. The implied constant only depends on N and ν because t ∈ [t, θ2 ] is

bounded above and below away from 0.

When t = 1
4 , the process is similar to the proof of Lemma 5.10 with the help of (5.3). First we deal with

the case k = 1
2 with cosu = 1 +O(u2) for u ∈ [0, π2 ]. Thus, when a

x−T > π
2 , we have x� a and pφ( i4 ) = O(1)
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in this case. When a
x−T ≤

π
2 , we have a� x and

pφ( i4 ) = e
πi
4

∫ ∞
0

φ(u)u−
3
2 du+O

(∫ ∞
0

φ(u)u
1
2 du

)
= e

πi
4

∫ a
x

a
2x

u−
3
2 du+ e

πi
4

(∫ a
2x

a
2x+2T

+

∫ a
x−T

a
x

)
u−

3
2φ(u)du+O(1)

= e
πi
4 (2
√

2− 2)
(x
a

) 1
2

+O

(
x−δ

(x
a

) 1
2

)
+O(1).

The case for k = 3
2 is similar using sinu = u+O(u3) for u ∈ [0, π2 ].

5.3 Proof of Theorem 1.7, same-sign case

The proof depends on the following two propositions for the Fourier coefficients of Maass forms, which were

originally obtained for the discrete spectrum in [47, Theorem 4.1] and [12, Theorem 4.3]. The author proved

the generalized propositions in §4.4 to include the continuous spectrum. Recall our notations in Settings 4.8

and 4.9. Recall Proposition 4.14 and Proposition 4.15. Before we start the proof, we need to make a few

remarks about the weight k:

(1) The trace formula (Theorem 5.1) works for k = 1
2 and 3

2 .

(2) The estimates on pφ and φ̃ in the previous section work for k = 1
2 and 3

2 .

(3) Proposition 4.14 and Proposition 4.15 work for k = 1
2 and − 1

2 .

Therefore, in this section, we separate the proof of Theorem 1.7 into two cases k = 1
2 and − 1

2 . In the second

case we will apply the Maass lowering operator L 3
2

(2.11) to connect the eigenforms of weight 3
2 and weight

− 1
2 .

We declare that all implicit constants for the bounds in this section depend on N , ν and ε, and we drop

the subscripts unless specified.

Since the exceptional spectral parameter rj ∈ i(0, 1
4 ] of the Laplacian ∆k on Γ = Γ0(N) is discrete,

tj = Im rj has a positive lower bound denoted as t > 0 depending on N and ν. We also have 2 Im r∆ ≤ θ

assuming Hθ (2.15) by Theorem 4.7. Recall the definition of A(m,n) and Au(m,n) in (4.43).

A(m,n) := (m̃
131
294 + um)

1
2 (ñ

131
294 + un)

1
2 � (m̃ñ)

131
588 + m̃

131
588u

1
2
n + ñ

131
588u

1
2
m + (umun)

1
2 ,

Au(m,n) := A(m,n)
1
4 (m̃ñ)

3
16 � (m̃ñ)

143
588 + m̃

143
588 ñ

3
16 u

1
8
n + m̃

3
16u

1
8
mñ

143
588 + (m̃ñ)

3
16 (umun)

1
8 .

Recall the notations in Setting 4.8 and Setting 4.9. The following inequalities will be used later in the proof:

A(m,n)� Au(m,n)� (m̃ñ)
1
4 ; (5.28)

(a
x

)β
A(m,n)� Au(m,n) for 0 ≤ β ≤ 3

2
, when x� Au(m,n)2. (5.29)

5.3.1 On the case k = 1
2

Let ρj(n) denote the coefficients of an orthonormal basis {vj(·)} of L̃ 1
2
(N, ν). For each singular cusp a of

Γ = Γ0(N), let ρa(n, r) be defined as in (4.3). Recall the definition of τj(m,n) in Theorem 1.7 and the
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notations in Settings 4.8 and 4.9. We claim the following proposition:

Proposition 5.12. With the same setting as Theorem 1.7 for k = 1
2 , when 2x ≥ Au(m,n)2, we have

∑
x<c≤2x
N |c

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

(22sj−1 − 1)τj(m,n)
x2sj−1

2sj − 1
�
(
x

1
6 +Au(m,n)

)
(m̃ñx)ε.

(5.30)

We first show that Proposition 5.12 implies Theorem 1.7 in the case k = 1
2 , which follows from a similar

process as [14, after Proposition 9.1]. Recall that 2 Im rj = 2sj − 1 for rj ∈ i(0, 1
4 ] and that the corresponding

exceptional eigenvalue λj = 1
4 + r2

j = sj(1− sj). The sum to be estimated is

∑
N |c≤X

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

τj(m,n)
X2 Im rj

2 Im rj
, (5.31)

where

τj(m,n) = 2i
1
2 ρj(m)ρj(n)π1−2sj (4m̃ñ)1−sj Γ(sj + 1

4 )Γ(2sj − 1)

Γ(sj − 1
4 )

.

Since tj = Im rj ∈ [t, 1
4 ] and sj = Im rj + 1

2 ∈ [t+ 1
2 ,

3
4 ], the quantity

π1−2sj41−sj Γ(sj + 1
4 )Γ(2sj − 1)

Γ(sj − 1
4 )

is bounded from above and below. By Proposition 4.15,

τj(m,n)

2sj − 1
� |ρj(m)ρj(n)|(m̃ñ)1−sj � A(m,n)(m̃ñ)

1
2−sj+ε. (5.32)

When X � Au(m,n)2, since A(m,n)� (m̃ñ)
1
4 by (5.28),

τj(m,n)
X2sj−1

2sj − 1
� A(m,n)|m̃ñ| 12−sj+εAu(m,n)4sj−2

= A(m,n)sj+
1
2 |m̃ñ| 18− 1

4 sj+ε � Au(m,n)(m̃ñ)ε.

(5.33)

So in this case we get Theorem 1.7 where the τj terms are absorbed in the errors.

When X ≥ Au(m,n)2, the segment for summing Kloosterman sums on 1 ≤ c ≤ Au(m,n)2 contributes a

Oν,ε(Au(m,n)|m̃ñ|ε) by condition (2) of Definition 1.6. The segment for Au(m,n)2 ≤ c ≤ X can be broken

into no more than O(logX) dyadic intervals x < c ≤ 2x with Au(m,n)2 ≤ x ≤ X
2 and we use Proposition 5.12

for both the Kloosterman sum and the τj terms. In summing dyadic intervals, for each rj ∈ i(0, 1
4 ], we get

dlog2(X/Au(m,n)2)e∑
`=1

(22sj−1 − 1)τj(m,n)

2sj − 1

(
X

2`

)2sj−1

=
τj(m,n)

2sj − 1
X2sj−1

(
1− 2(1−2sj)dlog2(X/Au(m,n)2)e

)
.
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The difference between the above quantity and the quantity τj(m,n)
X2sj−1

2sj − 1
in (5.31) is

τj(m,n)
X2sj−1

2sj − 1
· 2(1−2sj)dlog2(X/Au(m,n)2)e � τj(m,n)

2sj − 1
Au(m,n)4sj−2 � Au(m,n) (5.34)

by (5.32). In conclusion, for X ≥ Au(m,n)2 we get

∑
N |c≤X

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

τj(m,n)
X2sj−1

2sj − 1

=
∑

Au(m,n)2<c≤X

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

τj(m,n)
X2sj−1

2sj − 1
+O(Au(m,n)|m̃ñ|ε)

=

dlog2(X/Au(m,n)2)e∑
`=1

 ∑
X

2`
<c≤ X

2`−1

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

(22sj−1 − 1)τj(m,n)

2sj − 1

(
X

2`

)2sj−1


+O(Au(m,n)|m̃ñ|ε)

�
(
X

1
6 +Au(m,n)

)
|m̃ñX|ε

where the second equality follows from (5.34) and the last inequality is by Proposition 5.12. Theorem 1.7

follows in the case k = 1
2 .

The proof of Proposition 5.12 takes the rest of this subsection. For rj ∈ i(0, 1
4 ], by Proposition 4.15 we

have √
m̃ñ ρj(m)ρj(n)� A(m,n)(m̃ñ)ε.

Recall that a = 4π
√
m̃ñ and δ = 1

3 in Setting 4.8. Thanks to H 7
64

(2.15) and Proposition 4.7, when

rj = itj ∈ i(0, θ2 ] we have 2tj < δ = 1
3 . Since 2x ≥ Au(m,n)2 by hypothesis, it follows from (5.29) that

√
m̃ñ ρj(m)ρj(n)

(
x2tj−δ

a2tj
+
a2tj

x2tj
+ 1

)
� Au(m,n)(m̃ñ)ε.

Applying Lemma 5.11 where tj ∈ [t, θ2 ] and recalling the definition of τj in Theorem 1.7, we get

4
√
m̃ñ

ρj(m)ρj(n)

chπrj
pφ(rj)

= (22sj−1 − 1)τj(m,n)
x2sj−1

2sj − 1
+O (Au(m,n)(m̃ñ)ε) .

(5.35)

When rj = i
4 and k = 1

2 , Lemma 5.11 and (5.29) give

4
√
m̃ñ

ρj(m)ρj(n)

cos π4

pφ( i4 ) = 2(
√

2− 1)τj(m,n)x
1
2 +O

(
x

1
2−δ(m̃ñ)ε

)
. (5.36)

With the help of (5.35) and (5.36) we break up the left hand side of (5.30) to obtain the following analogue
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to [14, (9.8)]:∣∣∣∣∣∣∣∣
∑

x<c≤2x
N |c

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

(22sj−1 − 1)τj(m,n)
x2sj−1

2sj − 1

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑

x<c≤2x
N |c

S(m,n, c, ν)

c
−
∑
N |c>0

S(m,n, c, ν)

c
φ
(a
c

)∣∣∣∣∣∣∣∣+O
((
x

1
2−δ +Au(m,n)

)
(m̃ñ)ε

)

+

∣∣∣∣∣∣
∑
N |c>0

S(m,n, c, ν)

c
φ
(a
c

)
− 4
√
m̃ñ

∑
rj∈i(0, 14 ]

ρj(m)ρj(n)

chπrj
pφ(rj)

∣∣∣∣∣∣
=: S1 +O

((
x

1
2−δ +Au(m,n)

)
(m̃ñ)ε

)
+ S2.

(5.37)

The first sum S1 above can be estimated by condition (2) of Definition 1.6 as

S1 ≤
∑

x−T≤c≤x
2x≤c≤2x+2T

N |c

|S(m,n, c, ν)|
c

�N,ν,δ,ε x
1
2−δ(m̃ñx)ε.

(5.38)

We then prove a bound for S2. By Theorem 5.1, we have

S2 � |U 1
2
|+

∣∣∣∣∣∣√m̃ñ
∑
rj≥0

ρj(m)ρj(n)

chπrj
pφ(rj) +

√
m̃ñ

∑
singular a

∫ ∞
−∞

ρa(m, r)ρa(n, r)
pφ(r)

chπr
dr

∣∣∣∣∣∣ . (5.39)

5.3.1.1 Contribution from holomorphic forms

For k = 1
2 or 3

2 , recall the notation Bk before Theorem 5.1. For l ≥ 1, let {Fj,l(·)}j be an orthonormal

basis of Sk+2l(N, ν) with Fourier coefficient aF,j,l. By Proposition 5.5, uniformly for every l ≥ 1 with

dl := dimSk+2l(N, ν), we have k + 2l ≥ 5
2 and

Γ(k + 2l − 1)

(4π)k+2l−1(m̃ñ)
k+2l−1

2

dl∑
j=1

aF,j,l(m)aF,j,l(n)

≤

Γ(k + 2l − 1)

(4πñ)k+2l−1

dl∑
j=1

|aF,j,l(m)|2
 1

2
Γ(k + 2l − 1)

(4πm̃)k+2l−1

dl∑
j=1

|aF,j,l(n)|2
 1

2

� (m̃
19
42 + um)

1
2 (ñ

19
42 + un)

1
2 (m̃ñ)ε.

We also have
∞∑
l=1

(k + 2l − 1) |φ̃(k + 2l)| � 1 +
a

x
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by [20, Lemma 5.1 and proof of Lemma 7.1] and Lemma 5.8. Note that [20, Lemma 5.1] is only for k = 1
2 ,

while the same process works for k = 3
2 . Then the contribution from Uk is

Uk =

∞∑
l=1

k + 2l − 1

4π
φ̃ (k + 2l)

Γ(k + 2l − 1)

(4π)k+2l−1(m̃ñ)
k+2l−1

2

dl∑
j=1

aF,j,l(m)aF,j,l(n)

�
(

1 +
a

x

)
(m̃

19
42 + um)

1
2 (ñ

19
42 + un)

1
2 (m̃ñ)ε.

Recall a = 4π
√
m̃ñ and (4.43) for the definition of Au(m,n). Since

ñ
19
42 � ñ

131
294 ·

1
4 + 3

8 ≤ (ñ
131
294 + un)

1
4 ñ

3
8 and un � u

1
4
n ñ

3
8 ≤ (ñ

131
294 + un)

1
4 ñ

3
8 ,

we get (m̃
19
42 + um)

1
2 (ñ

19
42 + un)

1
2 � Au(m,n). Moreover, since

ñ
19
42 +1 � ñ

131
294 ·

3
4 + 9

8 ≤ (ñ
131
294 + un)

3
4 ñ

9
8 , nun � u

3
4
n ñ

9
8 ≤ (ñ

131
294 + un)

3
4 ñ

9
8 ,

and 2x ≥ Au(m,n)2 by hypothesis, we also get

(m̃
19
42 + um)

1
2 (ñ

19
42 + un)

1
2 · a

x
� (m̃

19
42 + um)

1
2 (ñ

19
42 + un)

1
2 · a

Au(m,n)2
� Au(m,n).

Finally we conclude

Uk � Au(m,n)(m̃ñ)ε for k = 1
2 or 3

2 . (5.40)

5.3.1.2 Contribution from Maass cusp forms and Eisenstein series.

We combine the two propositions at the beginning of this section and bounds on pφ in Section 4 to estimate

the contribution from the remaining part of S2 (5.39) other than Uk. The process is the same as §4.5 for

|r| ≤ 1 as pφ shares the same bound as φ̌ there. We record the bounds in the following equations.

Fix k = 1
2 . In the following estimations we focus on the discrete spectrum rj ≥ 0 because each bound

for rj ∈ [a, b] for any interval [a, b] ⊂ R is the same as the bound for r ∈ [a, b] ∪ [−b,−a] in the continuous

spectrum. This is a direct result from Proposition 4.14 and Proposition 4.15. Recall that 2x ≥ Au(m,n)2 in

the assumption of Proposition 5.12.

For r ∈ [0, 1), we apply Lemma 5.7, Proposition 4.15 and Cauchy-Schwarz to get

√
m̃ñ

∑
r∈[0,1)

∣∣∣∣∣ρj(m)ρj(n)

chπrj
pφ(rj)

∣∣∣∣∣� A(m,n)(m̃ñx)ε. (5.41)

For r ∈ [1, ax ), we apply Proposition 4.15 and pφ(r)� r−1 from (5.25). Since

S(R) :=
√
m̃ñ

∑
r∈[1,R]

∣∣∣∣∣ρj(m)ρj(n)

chπrj

∣∣∣∣∣� A(m,n)R
5
2 (m̃ñ)ε, (5.42)
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with the help of (5.29) we have

√
m̃ñ

∑
r∈[1, ax )

∣∣∣∣∣ρj(m)ρj(n)

chπrj
pφ(rj)

∣∣∣∣∣� r−1S(r)
∣∣∣ ax
r=1

+

∫ a
x

1

S(r)r−2dr

� A(m,n)
(a
x

) 3
2

(m̃ñx)ε � Au(m,n)(m̃ñx)ε.

(5.43)

Let

P (m,n) := 2(m̃ñ)
1
8A(m,n)−

1
2 ≥ 1.

Divide r ≥ max(ax , 1) into two parts: max
(
a
x , 1
)
≤ r < P (m,n) and r ≥ max

(
a
x , 1, P (m,n)

)
. We apply

Proposition 4.15 on the first range and pφ(r)� r−1 from (5.25) to get

√
m̃ñ

∑
max( ax ,1)≤rj<P (m,n)

∣∣∣∣∣ρj(m)ρj(n)

chπrj
pφ(rj)

∣∣∣∣∣ � Au(m,n)(m̃ñx)ε (5.44)

by partial summation as in (5.43). We divide the second range into dyadic intervals C ≤ rj < 2C. Applying

Proposition 4.14 with β = 1
2 + ε and pφ(r)� min(r−1, r−2 x

T ) from (5.25), we get

√
m̃ñ

∑
C≤rj<2C

∣∣∣∣∣ρj(m)ρj(n)

chπrj
pφ(rj)

∣∣∣∣∣
� min

(
C−1, C−2 x

T

)
C−

1
2

(
C2 + (m̃

1
4 + ñ

1
4 )C + (m̃ñ)

1
4

)
(m̃ñx)ε

�
(

min
(
C

1
2 , C−

1
2
x

T

)
+ (m̃

1
4 + ñ

1
4 )C−

1
2 + (m̃ñ)

1
4C−

3
2

)
(m̃ñx)ε.

(5.45)

Next we sum over dyadic intervals. For the first term min(C
1
2 , C−

1
2
x
T ), when

min
(
C

1
2 , C−

1
2
x

T

)
= C

1
2 :

∑
j≥1: 2jC= x

T

C≥P (m,n)

C
1
2 ≤

∞∑
j=1

2−
j
2

( x
T

) 1
2 �

( x
T

) 1
2

,

and when

min
(
C

1
2 , C−

1
2
x

T

)
= C−

1
2
x

T
:

∑
j≥0: C=2j xT

C−
1
2
x

T
≤
∞∑
j=0

2−
j
2

( x
T

) 1
2 �

( x
T

) 1
2

.

So after summing up from (5.45), recalling T � x1−δ in Setting 4.8, using C ≥ P (m,n) and (5.28), we have

√
m̃ñ

∑
rj≥max( ax ,1,P (m,n))

∣∣∣∣∣ρj(m)ρj(n)

chπrj
pφ(rj)

∣∣∣∣∣
�
(( x

T

) 1
2

+ (m̃+ ñ)
1
4 (m̃ñ)−

1
16A(m,n)

1
4 + (m̃ñ)

1
16A(m,n)

3
4

)
(m̃ñx)ε

�
(
x
δ
2 + (m̃ñ)

3
16A(m,n)

1
4

)
(m̃ñx)ε.

(5.46)
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Combining (5.44) and (5.46) we have

√
m̃ñ

∑
rj≥max( ax ,1)

∣∣∣∣∣ρj(m)ρj(n)

chπrj
pφ(rj)

∣∣∣∣∣ � (
x
δ
2 +Au(m,n)

)
(m̃ñx)ε. (5.47)

From (5.37), (5.38), (5.39), (5.40), (5.41), (5.43), and (5.47), we get

∑
x<c≤2x
N |c

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

(22sj−1 − 1)τj(m,n)
x2sj−1

2sj − 1

�
(
x

1
2−δ + x

δ
2 +Au(m,n)

)
(m̃ñx)ε.

Proposition 5.12 follows by choosing δ = 1
3 . We finish the proof of Theorem 1.7 in weight 1

2 .

5.3.2 On the case k = −1
2

Recall the remark after Proposition 4.15. Let ρ′j(n) denote the Fourier coefficients of an orthonormal basis

{v′j(·)} of L̃ 3
2
(N, ν). For each singular cusp a of (Γ, ν), let E′a(·, s) be the associated Eisenstein series in

weight 3
2 . Let ρ′a(n, r) be defined as in (4.3) associated with E′a(z, 1

2 + ir) for r ∈ R.

Recall the definition of the Maass lowering operator Lk in (2.11) and Hθ (2.15) for θ = 7
64 . By [54, (4.52)]

(where they used Λk for the lowering operator and λ(s) = s(1− s)), the set{
vj :=

(
1
16 + r2

j

)− 1
2 L 3

2
v′j : rj 6= i

4

}
is an orthonormal basis of

⊕
rj 6= i

4

L̃− 1
2
(N, ν, rj).

Combining [54, (4.36), (4.27) and the last equation of p. 502], for rj 6= i
4 and ñ > 0, since

L 3
2

(
W 3

4 ñ, Im r(4πñy)e(ñx)
)

= −( 1
16 + r2)W− ñ4 , Im r(4πñy)e(ñx),

the Fourier coefficient ρj(n) of vj satisfies

ρj(n) = −( 1
16 + r2)

1
2 ρ′j(n) for rj 6= i

4 , ñ > 0, (5.48)

and then

|ρj(n)| � |ρ′j(n)| if |rj | ≤ 1, Im rj ≤ θ
2 and |ρj(n)| � r|ρ′j(n)| if rj ≥ 1, (5.49)

where the bound 2 Im rj ≤ θ is from Proposition 4.7.

In the case rj = i
4 , (2.13) and (2.14) show that ρj(n) = 0 and

τj(m,n) = 0 for ñ > 0, rj = i
4 . (5.50)

Moreover, by [54, (4.48)], if Ea(z, s) is the Eisenstein series defined in weight − 1
2 , then

L 3
2
E′a(z, 1

2 + ir) = ( 1
4 − ir)Ea(z, s) and ( 1

16 + r2)
1
2 |ρ′a(n, r)| = |ρa(n, r)|.
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We also get

|ρa(n, r)| � |ρ′a(n, r)| if r ∈ [−1, 1] and |ρa(n, r)| � r|ρ′a(n, r)| if |r| ≥ 1. (5.51)

We have the following proposition:

Proposition 5.13. With the same setting as Theorem 1.7 for k = − 1
2 , when 2x ≥ Au(m,n)2, we have

∑
x<c≤2x
N |c

S(m,n, c, ν)

c
−

∑
rj∈i(0, θ2 ]

(22sj−1 − 1)τj(m,n)
x2sj−1

2sj − 1
�
(
x

1
6 +Au(m,n)

)
(m̃ñx)ε,

Note that here τj(m,n) is defined in weight − 1
2 , i.e.

τj(m,n) = 2i−
1
2 ρj(m)ρj(n)π1−2sj (4m̃ñ)1−sj Γ(sj − 1

4 )Γ(2sj − 1)

Γ(sj + 1
4 )

where ρj(n) is from (5.49) as the Fourier coefficient of vj ∈ L̃− 1
2
(N, ν, rj).

The proof that Proposition 5.13 implies Theorem 1.7 in the case k = − 1
2 is the same as the case of weight

1
2 before. This is because τj(m,n) = 0 for rj = i

4 (5.50) and because (5.32), (5.33) and (5.34) still hold for

rj ∈ i(0, θ2 ] (the process only involves estimates on ρj(n) with some applications of Proposition 4.15 in weight

− 1
2 ). In the rest of this subsection we prove Proposition 5.13.

First we show that the main terms corresponding to rj = itj ∈ i(0, θ2 ] are the same when we shift the

weight between − 1
2 and 3

2 . Recall sj = 1
2 + tj . Let τ ′j(m,n) denote the corresponding coefficients for x2sj−1

in weight 3
2 :

τ ′j(m,n) = 2e
3πi
4 ρ′j(m)ρ′j(n)π−2tj (4m̃ñ)

1
2−tj

Γ( 5
4 + tj)Γ(2tj)

Γ(tj − 1
4 )

,

where ρ′j(n) is defined at the beginning of this subsection.

We claim that

τ ′j(m,n) = τj(m,n), for m̃, ñ > 0 and rj ∈ i(0, 1
4 ]. (5.52)

When rj = i
4 , this is true because both of them equal to zero by (5.50) and Γ(0) =∞. When rj ∈ i(0, θ2 ],

τj(m,n) = 2e−
πi
4 ρj(m)ρj(n)π−2tj (4m̃ñ)

1
2−tj

Γ( 1
4 + tj)Γ(2tj)

Γ( 3
4 + tj)

= −2e
3πi
4

(
1

16
− t2j

)
ρ′j(m)ρ′j(n)π−2tj (4m̃ñ)

1
2−tj

Γ( 5
4 + tj)/(

1
4 + tj)

(− 1
4 + tj)Γ(− 1

4 + tj)
Γ(2tj)

= τ ′j(m,n).

Recall that the definition on pφ (5.2) is for weight k ≥ 0 and here we use pφ for weight 3
2 . We derive

4
√
m̃ñ

ρ′j(m)ρ′j(n)

chπrj
pφ(rj) = (22sj−1 − 1)τ ′j(m,n)

x2sj−1

2sj − 1
+O (Au(m,n)(m̃ñ)ε) . (5.53)

by the same process as we derive (4.49) above. Since τ ′j(m,n) = 0 when rj = i
4 , we have 2tj ≤ θ < δ (with
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θ = 7
64 (2.15) and δ = 1

3 chosen later) by Proposition 4.7 and still get∣∣∣∣∣∣∣∣
∑

x<c≤2x
N |c

S(m,n, c, ν)

c
−

∑
rj∈i(0, θ2 ]

(22sj−1 − 1)τ ′j(m,n)
x2sj−1

2sj − 1

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑

x<c≤2x
N |c

S(m,n, c, ν)

c
−
∑
N |c>0

S(m,n, c, ν)

c
φ
(a
c

)∣∣∣∣∣∣∣∣+O (Au(m,n)(m̃ñ)ε)

+

∣∣∣∣∣∣
∑
N |c>0

S(m,n, c, ν)

c
φ
(a
c

)
− 4
√
m̃ñ

∑
rj∈i(0, θ2 ]

ρ′j(m)ρ′j(n)

chπrj
pφ(rj)

∣∣∣∣∣∣
=: S3 +O (Au(m,n)(m̃ñ)ε) + S4.

(5.54)

The first sum S3 above can be estimated similarly by condition (2) of Definition 1.6 as

S3 ≤
∑

x−T≤c≤x
2x≤c≤2x+2T

N |c

|S(m,n, c, ν)|
c

�N,ν,δ,ε x
1
2−δ(m̃ñx)ε.

(5.55)

By Theorem 5.1,

S4 � |U 3
2
|+

∣∣∣∣∣∣√m̃ñ
∑
rj≥0

ρ′j(m)ρ′j(n)

chπrj
pφ(rj) +

√
m̃ñ

∑
singular a

∫ ∞
−∞

ρ′a(m, r)ρ′a(n, r)
pφ(r)

chπr
dr

∣∣∣∣∣∣ .
The bound for U 3

2
is done in (5.40). Estimates for the remaining part of S4 follow from the same process as

§5.3.1.2 in the case of weight 1
2 , taking (5.49) and (5.51) into account. For the same reason as the beginning

of §5.3.1.2, we just record the bounds with respect to the discrete spectrum here.

For r ∈ [0, 1), we apply Proposition 4.15, (5.49) and (5.7) to get

√
m̃ñ

∑
r∈[0,1)

∣∣∣∣∣ρ′j(m)ρ′j(n)

chπrj
pφ(rj)

∣∣∣∣∣� √m̃ñ ∑
r∈[0,1)

∣∣∣∣∣ρj(m)ρj(n)

chπrj
pφ(rj)

∣∣∣∣∣� A(m,n)(m̃ñx)ε. (5.56)

For r ∈ [1, ax ), we apply Proposition 4.15, ρ′j(n) � r−1
j |ρj(n)| from (5.49), and pφ(r) � 1 from (5.25).

Since

s(R) :=
√
m̃ñ

∑
r∈[1,R]

∣∣∣∣∣ρj(m)ρj(n)

chπrj

∣∣∣∣∣� A(m,n)R
7
2 (m̃ñ)ε (5.57)
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by Cauchy-Schwarz, with the help of (5.29) we have

√
m̃ñ

∑
rj∈[1, ax )

∣∣∣∣∣ρ′j(m)ρ′j(n)

chπrj
pφ(rj)

∣∣∣∣∣� √m̃ñ ∑
rj∈[1, ax )

∣∣∣∣∣ρj(m)ρj(n)

chπrj
r−2
j

∣∣∣∣∣
� r−2s(r)

∣∣∣ ax
r=1

+

∫ a
x

1

s(r)r−3dr

� A(m,n)
(a
x

) 3
2

(m̃ñx)ε

� Au(m,n)(m̃ñx)ε.

(5.58)

We still let

P (m,n) = 2(m̃ñ)
1
8A(m,n)−

1
2 ≥ 1

and divide r ≥ max(ax , 1) into two parts: max
(
a
x , 1
)
≤ r < P (m,n) and r ≥ max

(
a
x , 1, P (m,n)

)
. In the first

range, we apply Proposition 4.15, (5.49) and pφ(r)� 1 from (5.25) to get

√
m̃ñ

∑
max( ax ,1)≤rj<P (m,n)

∣∣∣∣∣ρ′j(m)ρ′j(n)

chπrj
pφ(rj)

∣∣∣∣∣ � Au(m,n)(m̃ñx)ε (5.59)

by partial summation similar as (5.58). We divide the second range into dyadic intervals C ≤ rj < 2C and

apply Proposition 4.14, (5.49) and pφ(r)� min(1, xrT ) from (5.25):

√
m̃ñ

∑
C≤rj<2C

∣∣∣∣∣ρ′j(m)ρ′j(n)

chπrj
pφ(rj)

∣∣∣∣∣� √m̃ñ ∑
C≤rj<2C

∣∣∣∣∣ρj(m)ρj(n)

chπrj
r−2
j

pφ(rj)

∣∣∣∣∣
� min

(
1,

x

CT

)
C−2

(
C

5
2 + (m̃

1
4 + ñ

1
4 )C

3
2 + (m̃ñ)

1
4C

1
2

)
(m̃ñx)ε

�
(

min
(
C

1
2 , C−

1
2
x

T

)
+ (m̃

1
4 + ñ

1
4 )C−

1
2 + (m̃ñ)

1
4C−

3
2

)
(m̃ñx)ε.

(5.60)

Summing up from (5.60) similar as we did after (4.58) and recalling T � x1−δ in Setting 4.8, we have

√
m̃ñ

∑
rj≥max( ax ,1,P (m,n))

∣∣∣∣∣ρ′j(m)ρ′j(n)

chπrj
pφ(rj)

∣∣∣∣∣
�
(( x

T

) 1
2

+ (m̃+ ñ)
1
4 (m̃ñ)−

1
16A(m,n)

1
4 + (m̃ñ)

1
16A(m,n)

3
4

)
(m̃ñx)ε

�
(
x
δ
2 + (m̃ñ)

3
16A(m,n)

1
4

)
(m̃ñx)ε.

(5.61)

From (5.59) and (5.61) we have

√
m̃ñ

∑
rj≥max( ax ,1)

∣∣∣∣∣ρ′j(m)ρ′j(n)

chπrj
pφ(rj)

∣∣∣∣∣ � (
x
δ
2 +Au(m,n)

)
(m̃ñx)ε. (5.62)
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Combining (5.54), (5.55), (5.40), (5.56), (5.58), and (5.62), we get

∑
x<c≤2x
N |c

S(m,n, c, ν)

c
−

∑
rj∈i(0, 14 ]

(22sj−1 − 1)τj(m,n)
x2sj−1

2sj − 1

�
(
x

1
2−δ + x

δ
2 +Au(m,n)

)
(m̃ñx)ε.

Proposition 5.13 follows by choosing δ = 1
3 and we finish the proof of Theorem 1.7.

Proof of Theorem 1.9. The proof follows from the same process as [14, §9.2]. Note that we need to restrict∑
rj=

i
4
τj(m,n) = 0 when m̃ > 0, ñ > 0 and k = 1

2 (and the conjugate case m̃ < 0, ñ < 0 and k = − 1
2 by

(1.13)), otherwise the sum may not converge.
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Chapter 6

Partitions of rank modulo 3

In this section we prove Theorem 1.11, with help from Theorem 1.7. The idea is essentially the same as [7],

[21]: we construct a particular weight 1
2 Maass-Poincaré series, whose holomorphic part of their value at

s = 3
4 is the rank generating function q−

1
24R(w; q). These Maass-Poincaré series are convergent uniformly

and absolutely when Re s > 1 by definition. To prove their convergence at s = 3
4 , we need the uniform bound

in Theorem 1.7.

6.1 Proof of Theorem 1.11, main line

Now we use the theorems in Section 1 to prove Theorem 1.11. We follow the outline of [7] and the idea is

that q−
1
24R(w, q) is the holomorphic part of a Poincaré series whose Fourier coefficients can be explicitly

calculated.

Recall the notations in Section 2.3. Let ν be an admissible multiplier system on Γ0(N) where αν > 0 and

B, M , ν′ and D be as in Definition 1.6. Let

Ms(y) := |y|− k2M k
2 sgn y, s− 1

2
(|y|) and ϕs,k(z) :=Ms(4πy)e(x)

where Mα,β is the standard M -Whittaker function. One can check that ϕs,k(z) is an eigenfunction of ∆̃k

with eigenvalue s(1− s) + k2−2k
4 . We define the Maass-Poincaré series by

Pk(s,m,N ; z) :=
1

Γ(2− k)

∑
γ=
(
a b
c d

)
∈Γ∞\Γ0(N)

ν(γ)(cz + d)−kϕs,k(m̃γz). (6.1)

By [21, Lemma 3.1], when Re s > 1, the above series is absolutely and uniformly convergent (in any compact

subset) . As in [21, Theorem 3.2 & Remark (1)], we have the following theorem for Pk (note that we have

replaced their 2 − k by k). Recall that Hk denotes the space of harmonic Maass forms of weight k in

Definition 2.3.

Theorem 6.1. With the notation above, when k ≤ − 1
2 is half-integral and m̃ < 0, we have

Pk(1− k
2 ,m,N ;Bz) ∈ Hk(Γ0(M), ( |D|· )ν2k

θ )
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and

Pk
(
1− k

2 ,m,N ; z
)

=
1− k

Γ(2− k)

(
Γ(1− k)− Γ(1− k, 4π|m̃|y)

)
qm̃

+
∑
ñ>0

β(n)qñ +
∑
ñ<0

β′(n)Γ (1− k, 4π|ñ|y) qñ,

where

β(n) = i−k2π
∣∣∣m̃
ñ

∣∣∣ 1−k2 ∑
N |c>0

S(m,n, c, ν)

c
I1−k

(
4π
√
|m̃ñ|
c

)

and

β′(n) =
i−k2π

Γ(1− k)

∣∣∣m̃
ñ

∣∣∣ 1−k2 ∑
N |c>0

S(m,n, c, ν)

c
J1−k

(
4π
√
|m̃ñ|
c

)
.

This theorem also holds when k = 1
2 , provided that we ensure the convergence of the formulas for β(n) and

β′(n). We can guarantee the convergence of these formulas for any admissible multiplier ν satisfying αν > 0.

We prove Theorem 1.11 assuming Theorem 6.1 in this section and prove Theorem 6.1 in the next section.

Define the theta function as

θ(z;h,N) :=
∑

n≡h (mod N)

nq
n2

24 .

It is well known that the above theta functions are holomorphic cusp forms of weight 3
2 whose transformation

formulas can be computed via [55]. Moreover, Bringmann and Ono [8] showed that some period integral of a

linear combination of such theta functions can be added as a non-holomorphic part to q−
1
24R(w; q) to get a

harmonic Maass form. We call that combination a shadow of q−
1
24R(w; q).

When w 6= 1 is a root of unity, by [56, Theorem 7.1] we know that q−
1
24R(w; q) is a mock modular form

of weight 1
2 with shadow proportional to

(
w

1
2 − w− 1

2

)∑
n∈Z

(
12

n

)
nw

n
2 q

n2

24 . (6.2)

Hence the shadow of q−
1
24R(−1; q) is proportional to θ(z; 1, 6) as [7, Remark, p.251] and a computation

shows that the shadow of q−
1
24R(e

2πi
3 ; q) is proportional to θ(z; 1, 12) + θ(z; 5, 12). Moreover, the differential

operator ξk maps a weight k harmonic Maass form to its shadow.

We take our weight 1
2 multiplier system ν = (d3 )νη on Γ0(3) to define the Maass-Poincaré series Pk(s,m, 3; z)

in (6.1). This multiplier is admissible with B = 24 and |D| = 4, i.e. the trivial Nebentypus. Denote

P (z) := P 1
2
( 3

4 , 0, 3; z), so P (24z) ∈ H 1
2
(576, νθ)

and write the Fourier expansion of P (z) as in Theorem 6.1.

We define M(z) to be the unique harmonic Maass form such that q−
1
24R(e

2πi
3 ; q) is its holomorphic part.

It follows that M(24z) is a weight 1
2 harmonic Maass form for some Γ0(M ′) and Nebentypus χ′. If we can

establish the equality M(24z) = P (24z), then Theorem 1.11 is proved using Theorem 6.1. The rest of this

section is devoted to proving this equality.
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Decompose P (24z) and M(24z) into holomorphic and non-holomorphic parts as

P (24z) = Ph(24z) + Pnh(24z) = q−1 +

∞∑
n=1

β(n)q24n−1 + Pnh(24z), (6.3)

M(24z) = Mh(24z) +Mnh(24z) = q−1R(e
2πi
3 ; q24) +Mnh(24z). (6.4)

Lemma 6.2. M(z) is a weight 1
2 harmonic Maass form for (Γ0(3), (d3 )νη).

Proof. We begin by investigating the shadows. Recall that Sk(N, ν) is the space of holomorphic cusp forms

on Γ0(N) with multiplier system ν. By combining Lemma 2.4, Theorem 6.1 and the definition of ξ 1
2
, the

shadow of P satisfies

Psha(z) := ξ 1
2
(P (z)) = ξ 1

2
(Pnh(z)) ∈ S 3

2
(3, ( ·3 )νη). (6.5)

Direct calculations using (1.19) yield Psha(3z) ∈ S 3
2
(9, ν3

η).

On the other hand, since ξ 1
2

maps M(z) to the shadow of q−
1
24R(e

2πi
3 ; q), we see that ξ 1

2
(M(z)) is

proportional to

Msha(z) := θ(z; 1, 12) + θ(z; 5, 12) =

∞∑
n=1

χ−36(n)nq
n2

24 ,

where χ−36 is the Dirichlet character modulo 12 induced by (−4
· ). One can check that Msha(3z) =

η(z)3 − (η3|U3V3)(z) where for f =
∑∞
n=1 af (n)q

n
8 ,

(f |U3)(z) :=

∞∑
n=1

af (3n)q
n
8 =

1

3

2∑
u=0

f

(
z + 8u

3

)
and (f |V3)(z) := f(3z).

Clearly η3 ∈ S 3
2
(1, ν3

η). With some tedious matrix calculation, we observe

(η3|U3V3)(z) =
1

3

2∑
u=0

η3

(
z +

8u

3

)
∈ S 3

2
(9, ν3

η).

Hence Msha(3z) ∈ S 3
2
(9, ν3

η), so Psha(3z) and Msha(3z) are in the same space.

Next we prove that Psha(3z) and Msha(3z) are proportional. One can check that

η(3z) ∈ S 1
2
(9, ( ·3 )ν3

η) and f(z) ∈ S 3
2
(9, ν3

η) =⇒ f(z)η(3z)7 ∈ S5(9, ( ·3 )).

Here S5(9, ( ·3 )) is a two-dimensional space spanned by q − 2q4 + O(q6) and q2 + q3 + O(q4). Since both

Psha(3z) and Msha(3z) have Fourier expansion∑
n≡1 (mod 24)

a1(n)q
n
8 , and η(3z)7 =

∑
n≡7 (mod 24)

a2(n)q
n
8 ,

the Fourier expansion of Psha(3z)η(3z)7 and Msha(3z)η(3z)7 both start with Cq +O(q4) for some non-zero

constant C (which might be different). We get

Psha(3z)η(3z)7 = cMsha(3z)η(3z)7 ⇒ Psha(z) = cMsha(z) and Pnh(z) = cMnh(z)
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for some constant c.

From (6.5) we conclude that Msha(z) ∈ S 3
2
(3, ( ·3 )νη). By [8, Theorem 1.2] we know that M(72z) is a

harmonic Maass form on Γ1(1728) and by [8, Theorem 3.4], M(z) is an entry of a vector-valued harmonic

Maass form on Γ0(1). To prove Lemma 6.2, it suffices to check the transformation law on Γ0(3) and we do

not need to check for the growth rate at the cusps. It is known that Γ0(3) can be generated by ( 1 1
0 1 ) and

(−1 1
−3 2

)
=
(

0 −1
3 0

)(
1 −1
0 1

)(
0 −1/3
1 0

)(
1 −1
0 1

)
. (6.6)

The transformation law of Mh(z) = q−
1
24 γ(q) as a sixth-order mock theta function can be found in [57, (4.3),

(5.5), p. 122]. Combining Mh and Mnh and carefully comparing the notation of Mordell integrals between

[57, p. 121]

J(α) :=

∫ ∞
0

e−αx
2

chαx
dx

and [8, (2.5), Theorem 2.3, (3.2), and Lemma 3.2]

J( 1
3 ;α) :=

∫ ∞
0

e−
3
2αx

2 chαx+ 1

ch(3αx/2)
dx,

we check that, under the transform of generators of Γ0(3) decomposing as in (6.6),

M(
(−1 1
−3 2

)
z) = e

(
5
12

)
(2− 3z)

1
2M(z), where ( 2

3 )νη
(−1 1
−3 2

)
= e

(
5
12

)
with the help of (1.19).

Next we show that the principal part of M(z) at the cusp 0 of Γ0(3) is constant. We can take the

scaling matrix σ0 =
( −1

3

)
. With [8, Theorem 2.3] we can check the image of the holomorphic part

Mh(z) = sin π
3 N ( 1

3 ; q) (in their notation) under the slash operator | 1
2
σ0. The result M( 1

3 ; 3z) has principal

part 0 and the Mordell integral
√
zJ( 1

3 ;−6πiz) is bounded when Im z →∞.

Since the principal part of the Poincaré series P (z) is non-constant only at ∞, by (6.3), the principal

part of E(z) := P (z)−M(z) is constant at both cusps of Γ0(3). Then Pnh = Mnh by [21, Lemma 2.3] and

E(z) = Ph(z)−Mh(z) is in fact a holomorphic modular form whose Fourier coefficients are supported on

n− 1
24 for n ≥ 1.

According to the Serre-Stark basis theorem [32, Theorem A], the space M 1
2
(576, νθ) consists of theta

functions whose Fourier coefficients are zero except those for exponents t`2 where t|576 and ` ∈ Z. However,

E(24z) is in M 1
2
(576, νθ) and has Fourier expansion supported on exponents of the form 24n− 1. Therefore,

E(z) = 0.

It follows that q−
1
24R(e

2πi
3 ; q) = Ph(z) is holomorphic part of P 1

2
( 3

4 , 0, 3; z) whose Fourier coefficient is

shown in Theorem 6.1. Note that we are in the special case k = 1
2 and m̃ = 0̃ = − 1

24 < 0 (stated at the end

of Theorem 6.1). This finishes the proof of Theorem 1.11.

Remark. The exact formula of A( 1
2 ;n) in [7], which can be rewritten as (1.34), can also be deduced from a

similar process as our proof here using Theorem 6.1.
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6.2 Proof of Theorem 6.1

The only thing left is to prove the Fourier expansion of Theorem 6.1. Recall the notations in §2.3. Let Mα,β

and Wα,β denote the M - and W -Whittaker functions, respectively. For y > 0, by [31, (13.18.4)],

M1− k2
(−y) = y−

k
2M− k2 ,

1
2−

k
2
(y)

= (1− k)(Γ(1− k)− Γ(1− k, y))e
y
2 ,

(6.7)

and by [31, (13.18.2)],

W− k2 ,
1
2−

k
2
(y) = y

k
2 e

y
2 Γ(1− k, y), W k

2 ,
1
2−

k
2
(y) = y

k
2 e−

y
2 . (6.8)

The contribution to Pk(1− k
2 ,m,N ; z) from c = 0 in (6.1) equals

1

Γ(2− k)
ϕ1− k2 , k

(m̃z) =
1− k

Γ(2− k)
(Γ(1− k)− Γ(1− k, 4π|m̃|y))e2πm̃z.

The contribution to Pk(1− k
2 ,m,N ; z) from some c > 0 equals

1

Γ(2− k)

∑
`∈Z

∑
d(c)∗

0<a<c, ad≡1(c)

ν( a ∗
c d+`c )(cz + d+ `c)−k

· M1− k2

(
4πm̃y

|cz + d+ `c|2

)
e

(
m̃a

c
− Re

(
m̃

c(cz + d+ `c)

))
=

1

Γ(2− k)
c−k

∑
d(c)∗

ν
(
a b
c d

)
e

(
m̃a

c

)∑
`∈Z

e(`αν)

(
z +

d

c
+ `

)−k

· M1− k2

(
4πm̃y

c2|z + d
c + `|2

)
e

(
−m̃
c2

Re

(
1

z + d
c + `

))
,

(6.9)

where we used (1.9): ν
(
a b+`a
c d+`c

)
= ν

(
a b
c d

)
ν( 1 `

0 1 ) = ν
(
a b
c d

)
e(−`αν) for all ` ∈ Z. Let

f(z) :=
∑
`∈Z

e(`αν)

(z + `)k
M1− k2

(
4πm̃y

c2|z + `|2

)
e

(
−m̃
c2

Re

(
1

z + `

))
.

Then f(z)e(ανx) has period 1 and f has Fourier expansion

f(z) =
∑
n∈Z

ay(n)e(ñx), f

(
z +

d

c

)
=
∑
n∈Z

ay(n)e

(
ñd

c

)
e(ñx), (6.10)

where by (6.7)

ay(n) =

∫
R
z−kM1− k2

(
4πm̃y

c2|z|2

)
e

(
− m̃x

c2|z|2
− nx+ ανx

)
dx

=
ck

|4πm̃y| k2

∫
R

(
x− iy
x+ iy

) k
2

M− k2 ,
1
2−

k
2

(
4π|m̃|y
c2|z|2

)
e

(
− m̃x

c2|z|2
− ñx

)
dx.
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By substituting x = yu,

ay(n) =
i−kyck

|4πm̃y| k2

∫
R

(
1 + iu

1− iu

) k
2

M− k2 ,
1
2−

k
2

(
4π|m̃|

c2y(u2 + 1)

)
e

(
|m̃|u

c2y(u2 + 1)
− ñyu

)
du.

This integral is evaluated by [58, p.32-33]. We get

ay(n) =
i−kckΓ(2− k)

|4πm̃y| k2 c
·



2π
√
|m̃/ñ|

Γ(1− k)
W− k2 ,1−

k
2
(4π|ñ|y)J1−k

(
4π
√
|m̃ñ|
c

)
, ñ < 0;

4π2− k2 |m̃|1− k2 ck−1y
k
2

(1− k)Γ(1− k)
, ñ = 0;

2π
√
|m̃/ñ|W k

2 ,1−
k
2
(4πñy)I1−k

(
4π
√
|m̃ñ|
c

)
, ñ > 0.

Applying (6.8), substituting (6.10) in (6.9), interchanging the finite sum on d and sum on n, and summing

over N |c > 0 we get

Pk(1− k
2 ,m,N ; z) =

1− k
Γ(2− k)

(Γ(1− k)− Γ(1− k, 4π|m̃|y))e2πm̃z +
∑
n∈Z

e2πiñz

·



i−k2πΓ(1− k, 4π|ñ|y)

Γ(1− k)

∣∣∣m̃
ñ

∣∣∣ 1−k2 ∑
N |c>0

S(m,n, c, ν)

c
J1−k

(
4π
√
|m̃ñ|
c

)
, ñ < 0;

i−k(2π)2−k|m̃|1−k

Γ(2− k)

∑
N |c>0

S(m, 0, c, ν)

c2−k
ñ = 0;

i−k2π
∣∣∣m̃
ñ

∣∣∣ 1−k2 ∑
N |c>0

S(m,n, c, ν)

c
I1−k

(
4π
√
|m̃ñ|
c

)
, ñ > 0.

Since we assumed αν > 0, we do not have the term for ñ = 0.

It remains to prove the convergence of Fourier coefficients when k = 1
2 and αν > 0. Since m̃ < 0, whenever

ñ > 0 or < 0, the convergence follows from Theorem 1.9. Readers may notice that the original proof in [14,

Section 10] involves Cauchy’s convergence when ñ < 0. As we already proved Theorem 1.9 in both the mixed-

and same-sign case, we have finished the proof.

6.3 Asymptotics for ranks of partitions modulo 1,2,3

In this section we collect some results on the asymptotics to the exact formulas for ranks of partitions modulo

p ≤ 3. Note that the exact formulas for p ≥ 5 become different and we will discuss in the next chapter. Recall

the definition of Ac(n) in (1.26). The first asymptotic for p(n) is given by Hardy and Ramanujan [4]: let

ñ = n− 1
24 , then

p(n) ∼ 1

2π
√

2

∑
c≤α
√
n

Ac(n)c
1
2
d

dn

exp
(
π
√

2ñ
3 /c

)
√
ñ

 . (6.11)
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Later in 1938, Rademacher proved the famous exact formula, by showing that [5, (5.9)]

p(n) =
1

π
√

2

N∑
c=1

Ac(n)c
1
2
d

dn

 sinh
(
π
√

2ñ
3 /c

)
√
ñ

+O(e2πn/N2

N−
1
2 ) (6.12)

and letting N →∞.

Let R1(n;x) be the tail sum:

R1(n;x) :=
1

π
√

2

∑
c≥x

Ac(n)c
1
2
d

dn

 sinh
(
π
√

2ñ
3 /c

)
√
ñ

 .

This sum is convergent by Rademacher’s exact formula. Rademacher’s result showed R1(n, α
√
n)� n−

1
4 ,

which was later improved to R1(n, α
√
n) � n−

1
2 log n by Lehmer [59]. The recent work by Ahlgren and

Andersen [11, Theorem 1.1] proved R1(n, α
√
n)� n−

1
2−

1
168 +ε and optimized the bound to R1(n, αn

1
2 + 5

252 )�
n−

1
2−

1
28 +ε. The best estimate known today is by Andersen and Wu [13]:

R1(n, α
√
n)� n−

1
2 +εt−

1
36w−

1
6 , where 24n− 1 = tw2 and t is square-free.

Recall R(w; q) defined in (1.31) and A( `u ;n) as its Fourier coefficient when w = ζ`u = e(`/u). As R(−1; q)

is one of Ramanujan’s famous third order mock theta functions, Ramanujan claimed a similar asymptotic for

A( 1
2 ;n) = N(0, 2;n)−N(1, 2;n), which was proved by Dragonette in 1952 [9]:

A

(
1

2
;n

)
= (−1)n−1 exp(π

√
ñ/6)

2
√
ñ

+O

(
exp(π2

√
ñ/6)

2
√
ñ

)
.

Dragonette concluded a even stronger result:

A

(
1

2
;n

)
=

√
n∑

c=1

λ(c) exp(πc
√
ñ/6)

√
c
√
ñ

+O(n
1
2 log n),

where λ(1) = (−1)n−1/2 and

λ(c) =
1

2

∑
(h,2c)=1
−c<h<c

e

(
hn

2c

)
εh,c

for h odd, hh′′ ≡ −1 (mod 2c) and

εh,c = (−1)c+
h2−1

8 e

(
(2c2 + 1)h′′(h2 − 1)/2− h(c2 − 1)

24c

)
· 1

2c2

2c−1∑
µ=0

e

(
(h+ c)µ2

2c

)
.

Andrews [10] improved Dragonette’s result as

A

(
1

2
;n

)
=

√
n∑

c=1

λ(c) exp(πc
√
ñ/6)

√
c
√
ñ

+Oε(n
ε) (6.13)

for any ε > 0. The exact formula was finally proved by Bringmann and Ono [7], as we have stated in (1.33).
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If we let R2(n, x) be the tail sum

R2(n, x) =
π

(24n− 1)
1
4

∑
k≥x

(−1)b
k+1
2 cA2k(n− k(1+(−1)k)

4 )

k
I 1

2

(
π
√

24n− 1

12k

)
,

then Dragonette’s result implies R2(n,
√
n)� n

1
2 log n and Andrews’ result implies R2(n,

√
n)�ε n

ε. The

work by Ahlgren and Dunn [12] improved the bound to

R2(n, α
√
n)�α,ε n

− 1
147 +ε

when 24n− 1 is square-free. The author got the same bound in [14, Theorem 2.3] without the square-free

requirement.

ForR(ζ3; q) = R(ζ2
3 ; q), we have A( 1

3 ;n) = A( 2
3 ;n) = N(0, 3;n)−N(1, 3;n) = N(0, 3;n)−N(2, 3;n). With

the notation B`,u,c(n,m) in (1.37), in [17, Proposition 5.1] Bringmann proved A( 1
3 ; 3n) < 0, A( 1

3 ; 3n+ 1) > 0

and A( 1
3 ; 3n+ 2) < 0 for all n /∈ {1, 3, 7} based on the asymptotic formula [17, Theorem 1.1]:

A

(
1

3
;n

)
=

4
√

3i

(24n− 1)
1
2

∑
3|k≤

√
n

B1,3,k(−n, 0)√
k

sinh

(
π
√

24k − 1

6k

)
+Oε(n

ε).

Bringmann and Ono claimed in [21] that this formula, when summing up to infinity, is the exact formula for

A( 1
3 ;n).

This claim, which is exactly Theorem 1.11, has been proved by the author in the previous two sections.

If we denote R3(n, x) as the tail sum as (1.36), then Bringmann’s result gives R3(n,
√
n)�ε n

ε, while the

author’s Theorem 1.12 improves the bound as R3(n, α
√
n)�α,ε n

− 1
147 +ε.
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Chapter 7

Partitions of rank modulo a prime

p ≥ 5

In this chapter we prove Theorem 1.14. We also prove (1.44) and (1.45) in the Remark to show that this

formula matches the result by Bringmann [17] in (1.41). Further more, we obtain an extra coincidence and

put it in the last section for future interests. Recall our notations in Section 2.4.

7.1 Vector-valued Maass-Poincaré series

We construct harmonic Maass forms via the so-called Maass-Poincaré series. For s ∈ C, k ∈ Z + 1
2 , and

z = x+ iy ∈ C with x, y ∈ R, define

Ms(y) := |y|− k2M k
2 sgn y, s− 1

2
(|y|) and ϕs,k(z) :=Ms(4πy)e(x)

where Mα,β is the standard M -Whittaker function. One can check that ϕs,k(z) is an eigenfunction of ∆̃k

with eigenvalue s(1− s) + k2−2k
4 .

From now on we fix the prime p ≥ 5 and focus on our (p− 1)-dimensional weight k = 1
2 multiplier system

µp in Definition 2.11. For an integer m ≤ 0, recall m+∞ = m− 1
24 defined in (2.35). Since we do not need the

weight − 1
2 case of µp and only have µp in this section, we simply write m∞ instead of m+∞. For m∞ < 0,

we define the Maass-Poincaré series at the cusp ∞ by

P∞(z; p, s, 1
2 ,m, µp) :=

2√
π

p−1∑
`=1

∑
γ∈Γ∞\Γ0(p)

µp(γ)−1 ϕs,k(m∞γz)

(cz + d)
1
2 sin(π`p )

e`. (7.1)

By [21, Lemma 3.1], this series is absolutely and uniformly convergent on any compact subset of Re s > 1.

The transformation formula for P∞(z; p, s, 1
2 ,m, µp):

P∞(γ1z; p, s,
1
2 ,m, µp) = µp(γ1)(Cz +D)

1
2 P∞(z; p, s, 1

2 ,m, µp) for γ1 = (A B
C D ) ∈ Γ0(p)

can be proved similarly as (3.17).

For an integer r ≥ 0, recall the definition of xr in (2.37), the stabilizer group Γ0 of the cusp 0 of Γ0(p):

Γ0 = {±( 1 0
c 1 ) : c ∈ pZ} and the scaling matrix σ0 =

(
0 −1/

√
p√

p 0

)
. Recall the notations Xr and X

(`)
r,+0 in
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(2.40). We denote X
(`)
r,0 instead of X

(`)
r,+0 for simplicity. Recall the notations B r C and B a, r C in (2.38).

For every integer r ≥ 0, we define the Maass-Poincaré series at the cusp 0 by

P0(z; p, s, 1
2 , r, µp)

:=
2e(− 1

8 )p
1
4

√
π

∑
`∈BrC

∑
γ∈Γ0\Γ0(p)

γ=
(
a b
c d

)
µp(γ)−1ω 1

2
(σ−1

0 , γ)
ϕs,k

(
X

(`)
r,0σ

−1
0 γz

)
(−a√pz − b√p) 1

2

e`.
(7.2)

Note that σ−1
0 γ =

(
c√
p

d√
p

−a√p −b√p

)
. By [21, Lemma 3.1], the above series is absolutely and uniformly convergent

on any compact subset of Re s > 1. The transformation formula for P0(z; p, s, 1
2 , r, µp):

P0(γ1z; p, s,
1
2 , r, µp) = µp(γ1)(Cz +D)

1
2 P0(z; p, s, 1

2 , r, µp) for γ1 = (A B
C D ) ∈ Γ0(p)

can be proved similarly as (3.31).

For convenience, we define the principal part of our vector-valued Maass-Poincaré series here. For a

vector-valued smooth function P(z) which satisfies P(γz) = µp(γ)(cz + d)
1
2 P(z) for γ ∈ Γ0(p), if there exist

R∞(z) and R0(z) such that R
(`)
∞ (z), R

(`)
0 (z) ∈ C[q−1] for 1 ≤ ` ≤ p− 1 and

P (`)(z)−R(`)
∞ (z) = O(e−Cy), (

√
pz)−

1
2P (`)(− 1

pz )−R(`)
0 (z) = O(e−Cy) for y →∞ and some C > 0,

then we call R∞(z) and R0(z) the principal parts of P(z) at the cusps ∞ and 0 of Γ0(p), respectively.

Moreover, if the Fourier expansion of P(z) can be written as

P(z) =

p−1∑
`=1

∑
n≥M

a
(`)
+ (n)qn∞e` +

p−1∑
`=1

∑
n<0

a
(`)
− (n)Γ( 1

2 , 4π|n∞|y)qn∞e`,

for some M ∈ Z, then the principal part of P(z) at the cusp ∞ is

R∞(z) =

p−1∑
`=1

∑
M≤n≤0

a
(`)
+ (n)qn∞e`. (7.3)

We take n ≤ 0 because of α∞ = 1
24 > 0. The principal part of P(z) at the cusp 0 is clearly the principal part

of (
√
pz)−

1
2 P(− 1

pz ) at the cusp ∞.

7.1.1 Fourier expansions of P∞ at ∞

In this subsection, we compute the Fourier expansions of P∞(z; p, s, 1
2 ,m, µp) at s = 3

4 . It is important to

note that we only have the absolute and uniform convergence for Re s > 1 by definition. However, the Fourier

expansion in the following theorem is guaranteed to be convergent by Proposition 3.14 when s = 3
4 . By

analytic continuation, P∞(z; p, s, 1
2 ,m, µp) is convergent at s = 3

4 and has the Fourier expansion as below.

The proof of Proposition 3.14 is independent from this chapter.

There are similar arguments in [7, Proof of Theorem 3.1] for p = 2 and [14, Theorem 4.3] for p = 3.

Proposition 7.1. When m∞ < 0, the Maass-Poincaré series P∞(z; p, s, 1
2 ,m, µp) is convergent at s = 3

4 ,
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and we have the following Fourier expansion:

P∞(z; p, 3
4 ,

1
2 ,m, µp) =

p−1∑
`=1

(
1−

Γ( 1
2 , 4π|m∞|y)
√
π

)
qm∞

sin(π`p )
e`

+
∑
n∞>0

B∞(n)qn∞ +
∑
n∞<0

B′∞(n)
Γ
(

1
2 , 4π|n∞|y

)
√
π

qn∞ ,

where

B∞(n)

B′∞(n)

}
= 2πe(− 1

8 )

∣∣∣∣m∞n∞
∣∣∣∣ 14 p−1∑

`=1

∑
N |c>0

S
(`)
∞∞(m,n, c, µp)

c


I 1

2

(
4π|m∞n∞|

1
2

c

)

J 1
2

(
4π|m∞n∞|

1
2

c

)
.

(7.4)

Here S
(`)
∞∞(m,n, c, µp) is defined by (2.44) and its scalar value can be written as

S(`)
∞∞(m,n, c, µp) = e(− 1

8 )
∑

d (mod c)∗

ad≡1 (mod c)

µ(c, d, [a`], p)

sin(π[a`]
p )

e−πis(d,c)e

(
ma+ nd

c

)
. (7.5)

Proof. The following process is well-known and we provide details for readers to check. Recall the properties

of Whittaker functions from (2.18) to (2.22).

The contribution to P∞(z; p, s, 1
2 ,m, µp) from c = 0 equals

2√
π

p−1∑
`=1

csc(π`p )ϕs, 12 (m∞z)e`.

When s = 3
4 , by (2.20), such contribution is

2√
π

p−1∑
`=1

csc(π`p )ϕ 3
4 ,

1
2
(m∞z)e` =

(
1−

Γ( 1
2 , 4π|m∞|y)
√
π

) p−1∑
`=1

csc(π`p )e2πm∞ze`.

Recall (Definition 2.11) that µp (( a ∗∗ d ))
−1

maps the value at the [a`]-th entry to the `-th entry. Us-

ing the properties (1.9) for νη and Proposition 2.12 for µp and Mp, for Re s > 0, the contribution to

P∞(z; p, s, 1
2 ,m, µp) from some c > 0 equals

2√
π

p−1∑
`=1

∑
t∈Z

∑
d(c)∗

µ−1
p

(
a b+ta
c d+tc

)
(cz + d+ tc)−

1
2 csc(π`p )

· Ms

(
4πm̃y

|cz + d+ tc|2

)
e

(
m∞a

c
− Re

(
m∞

c(cz + d+ tc)

))
e`

=
2√
πc

p−1∑
`=1

∑
d(c)∗

µ(c, d, [a`], p)

sin(π[a`]
p )

νη(
(
a b
c d

)
)e
(m∞a

c

)∑
t∈Z

e (tα∞)

(
z +

d

c
+ t

)− 1
2

· Ms

(
4πm̃y

c2|z + d
c + t|2

)
e

(
−m∞

c2
Re

(
1

z + d
c + t

))
e`.

(7.6)
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Here we use
∑
d(c)∗ to abbreviate the following summation condition: for d (mod c)∗, we choose a by

ad ≡ 1 (mod c) and b by ad− bc = 1.

Let

f(z) :=
∑
t∈Z

e(tα∞)

(z + t)
1
2

Ms

(
4πm∞y

c2|z + t|2

)
e

(
−m∞

c2
Re

(
1

z + t

))
.

Then f(z)e(α∞x) has period 1 and f has Fourier expansion

f(z) =
∑
n∈Z

ay(n)e(n∞x) and f

(
z +

d

c

)
= e

(
n∞d

c

)
f(z). (7.7)

Here by [58, Proof of Theorem 1.9], we can compute

ay(n) =
e(− 1

8 )Γ(2s)

|4πm∞y|
1
4
√
c
·


2π

Γ(s− 1
4 )

∣∣∣∣m∞n∞
∣∣∣∣ 12 W− 1

4 ,s−
1
2
(4π|n∞|y)J2s−1

(
4π|m∞n∞|

1
2

c

)
, n∞ < 0;

2π

Γ(s+ 1
4 )

∣∣∣∣m∞n∞
∣∣∣∣ 12 W 1

4 ,s−
1
2
(4πn∞y)I2s−1

(
4π|m∞n∞|

1
2

c

)
, n∞ > 0.

Thus, for Re s > 1, we have the Fourier expansion of P∞(z; p, s, 1
2 ,m, µp):

P∞(z; p, s, 1
2 ,m, µp) =

2√
π

p−1∑
`=1

ϕs, 12 (z)

sin(π`p )
e` +

∑
n∈Z

e2πin∞z
2Γ(2s)e(− 1

8 )|m∞|
1
4

√
π|n∞|

1
2 |4πy| 14

·



2πW− 1
4 ,s−

1
2
(4π|n∞|y)

Γ(s− 1
4 )

p−1∑
`=1

∑
p|c>0

S
(`)
∞∞(m,n, c, µp)

c
J2s−1

(
4π|m∞n∞|

1
2

c

)
, n∞ < 0;

2πW 1
4 ,s−

1
2
(4πn∞y)

Γ(s+ 1
4 )

p−1∑
`=1

∑
p|c>0

S
(`)
∞∞(m,n, c, µp)

c
I2s−1

(
4π|m∞n∞|

1
2

c

)
, n∞ > 0.

For the right side of the expansion above, if we let s = 3
4 , by (2.21) we get

p−1∑
`=1

(
1−

Γ( 1
2 , 4π|m∞|y)
√
π

)
e2πm∞z

sin(π`p )
e` +

∑
n∈Z

e2πin∞z · 2πe(− 1
8 )
∣∣∣m∞
n∞

∣∣∣ 14

·


Γ( 1

2 , 4π|n∞|y)
√
π

p−1∑
`=1

∑
p|c>0

S
(`)
∞∞(m,n, c, µp)

c
J 1

2

(
4π|m∞n∞|

1
2

c

)
, n∞ < 0;

p−1∑
`=1

∑
p|c>0

S
(`)
∞∞(m,n, c, µp)

c
I 1

2

(
4π|m∞n∞|

1
2

c

)
, n∞ > 0.

By Proposition 3.14, the above expression is convergent. Therefore, by analytic continuation, the series

P∞(z; p, s, 1
2 ,m, µp) is convergent at s = 3

4 and has the Fourier expansion as above.

The last expression (7.5) is easily deduced by combining (2.44), Definition 2.11, and (1.18).

7.1.2 Fourier expansion of P0 at ∞

In this subsection, we compute the Fourier expansions of P0(z; p, s, 1
2 , r, µp) at s = 3

4 . Also note that the

convergence of the Fourier expansion in Proposition 7.2 is guaranteed by Proposition 3.14 when s = 3
4 . Hence

we have the convergence of P0(z; p, s, 1
2 , r, µp) at s = 3

4 by analytic continuation. Recall our notations B r C
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and B a, r C in (2.38) and α
(`)
+0 in (2.36). Since we do not consider the weight − 1

2 case of µp here, we write

X
(`)
r,0 = X

(`)
r,+0 for simplicity.

Proposition 7.2. For an integer r ≥ 0, the series P0(z; p, s, 1
2 , r, µp) is convergent at s = 3

4 and we have

P0(z; p, 3
4 ,

1
2 , r, µp) =

∑
n∞>0

B0(n)qn∞ +
∑
n∞<0

B′0(n)
Γ
(

1
2 , 4π|n∞|y

)
√
π

qn∞ ,

where

B0(n)

B′0(n)

}
= 2π

p−1∑
`=1

∑
a>0: p-a,
[a`]∈BrC

∣∣∣∣∣X
([a`])
r,0

pn∞

∣∣∣∣∣
1
4

S
(`)
0∞(X

([a`])
r , n, a, µp)

a


I 1

2

4π

a

∣∣∣∣∣X
([a`])
r,0 n∞

p

∣∣∣∣∣
1
2


J 1

2

4π

a

∣∣∣∣∣X
([a`])
r,0 n∞

p

∣∣∣∣∣
1
2

 .

(7.8)

Here S
(`)
0∞(X

([a`])
r , n, a, µp) = S

(`)
0∞(X

([a`])
r , n, a, µp)e` is defined in (2.49). If [a`] ∈B r C, we have

S
(`)
0∞(X([a`])

r , n, a, µp) = e(− 1
8 )

∑
b: b (mod a)∗

p|c, 0<c<pa
s.t. ad−bc=1

µ(c, d, [a`], p)eπis(d,c)e

(
m

([a`])
r,0 · cp − n∞b

−a
+
a+ d

24c

)
; (7.9)

if [a`] /∈B r C, we have S
(`)
0∞(X

([a`])
r , n, a, µp) = 0.

Remark. In the Fourier expansion, when ` is fixed, for the summation on a we only select a such that p - a
and [a`] ∈B r C. It is also important to note that the denominator in the last exponential term in (7.9) is

−a, which is negative.

Proof. Recall the double coset decomposition (3.32) and the choice of γ2 below it:

σ−1
0 Γ0(p)σ∞ =

⋃
a>0
p-a

⋃
b (mod a)∗

Γ∞

(
c√
p

d√
p

−a√p −b√p

)
Γ∞,

σ−1
0 (Γ0 \ Γ0(p)) = {σ−1

0

(
a b
c d

)
( 1 t

0 1 ) : a > 0, p - a, b (mod a)∗, t ∈ Z}.

One can check that for c ≥ 0 and a > 0, we have

w 1
2
(σ−1

0 , σ0γ)(−a√pz − b√p) 1
2 =

(
−a√p z − b√p

cz + d

) 1
2

(cz + d)
1
2 = −ip 1

4 (az + b)
1
2 .

In the double coset decomposition, we can take the representative
(
c/
√
p ∗

−a√p ∗

)
with a > 0 and c ≥ 0 because
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(
1 β
0 1

)( c/
√
p ∗

−a√p ∗

)
=
(

(c−βap)/√p ∗
−a√p ∗

)
for any β ∈ Z. Then from (7.2), for Re s > 1 we have

P0(z; p, s, 1
2 , r, µp)

=
2e(− 1

8 )p
1
4

√
π

∑
`∈BrC

∑
γ=

(
c√
p

d√
p

−a√p −b√p

)
γ∈Γ∞\σ−1

0 Γ0(p)

µp(σ0γ)−1w 1
2
(σ−1

0 , σ0γ)
ϕs, 12 (X

(`)
r,0γz)

(−a√pz − b√p) 1
2

e`

=
2e( 1

8 )
√
π

∑
`∈BrC

∑
a>0
p-a

∑
b(a)∗

∑
t∈Z

µp
((

a b+ta
c d+tc

))−1 ϕs, 12 (X
(`)
r,0γz)

(az + b+ ta)
1
2

e`.

Here and below we use
∑
b(a)∗ to abbreviate the following summation condition: c and d are determined by

p|c, 0 < c < pa, and ad− bc = 1.

Observe that γz = cz+d
−paz−pb = − c

pa −
1

pa(az+b) , µ(c, d + tc, `, p) = µ(c, d, `, p) for all ` and t, and

νη
((

a b+ta
c d+tc

))
= νη

((
a b
c d

))
e(tα∞) by (1.9). The contribution from a single a for p - a is then

2e( 1
8 )

√
πa

∑
`∈BrC

∑
b(a)∗

µ(c, d, `, p)νη(
(
a b
c d

)
)e

(
−X(`)

r,0c

pa

)∑
t∈Z

e(tα∞)

·
(
z + b

a + t
)− 1

2 Ms

(
4πX

(`)
r,0y

pa2|z + b
a + t|2

)
e

(
−X(`)

r,0

pa2
Re

(
1

z + b
a + t

))
e[d`]

=
2e( 1

8 )
√
πa

∑
`∈Ba,rC

∑
b(a)∗

µ(c, d, [a`], p)νη(
(
a b
c d

)
)e

(
−X([a`])

r,0 c

pa

)∑
t∈Z

e(tα∞)

·
(
z + b

a + t
)− 1

2 Ms

(
4πX

([a`])
r,0 y

pa2|z + b
a + t|2

)
e

(
−X([a`])

r,0

pa2
Re

(
1

z + b
a + t

))
e`.

Here we have changed [d`] to `, hence ` to [a`] and ` ∈B r C to ` ∈B a, r C.

As in the case of P∞ in Proposition 7.1, we let

f(z) :=
∑
t∈Z

e(tα∞)

(z + t)k
Ms

(
4πX

([a`])
r,0 y

pa2|z + t|2

)
e

(
−X([a`])

r,0

pa2
Re

(
1

z + t

))
.

Then f(z)e(α∞x) has period 1 and f has Fourier expansion

f(z) =
∑
n∈Z

ay(n)e(n∞x) and f

(
z +

b

a

)
= e

(
n∞b

a

)
f(z). (7.10)
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Here by [58, Proof of Theorem 1.9], we have

ay(n) =
e(− 1

8 )Γ(2s)∣∣4πX([a`])
r,0 y

∣∣ 14 p 1
4
√
a

·



2π

Γ(s− 1
4 )

∣∣∣∣∣X
([a`])
r,0

n∞

∣∣∣∣∣
1
2

W− 1
4 ,s−

1
2
(4π|n∞|y)J2s−1

4π

a

∣∣∣∣∣X
([a`])
r,0

p
· n∞

∣∣∣∣∣
1
2

 , n∞ < 0;

2π

Γ(s+ 1
4 )

∣∣∣∣∣X
([a`])
r,0

n∞

∣∣∣∣∣
1
2

W 1
4 ,s−

1
2
(4πn∞y)I2s−1

4π

a

∣∣∣∣∣X
([a`])
r,0

p
· n∞

∣∣∣∣∣
1
2

 , n∞ > 0.

Thus, the Fourier expansion of P0(z; p, s, 1
2 , r, µp) at the cusp ∞ for Re s > 1 is:

P0(z; p, s, 1
2 ,Xr, µp) =

p−1∑
`=1

∑
n∈Z

e2πin∞z · 2Γ(2s)
√
π|4πy| 14 p 1

4 |n∞|
1
2

·



∑
a>0: p-a,
[a`]∈BrC

2πW− 1
4 ,s−

1
2
(4π|n∞|y)

Γ(s− 1
4 )
∣∣∣X([a`])

r,0

∣∣∣− 1
4

S
(`)
0∞(X

([a`])
r , n, a, µp)

a
J 1

2

4π

a

∣∣∣∣∣X
([a`])
r,0

p
· n∞

∣∣∣∣∣
1
2

 , n∞ < 0;

∑
a>0: p-a,
[a`]∈BrC

2πW 1
4 ,s−

1
2
(4πn∞y)

Γ(s+ 1
4 )
∣∣∣X([a`])

r,0

∣∣∣− 1
4

S
(`)
0∞(X

([a`])
r , n, a, µp)

a
I 1

2

4π

a

∣∣∣∣∣X
([a`])
r,0

p
· n∞

∣∣∣∣∣
1
2

 , n∞ > 0.

For the right side of the expansion above, if we let s = 3
4 , by (2.21) we get

p−1∑
`=1

∑
n∈Z

2πe2πin∞z

·



∑
a>0: p-a,
[a`]∈BrC

Γ( 1
2 , 4π|n∞|y)
√
π

∣∣∣∣∣X
([a`])
r,0

pn∞

∣∣∣∣∣
1
4

S
(`)
0∞(X

([a`])
r , n, a, µp)

a
J 1

2

4π

a

∣∣∣∣∣X
([a`])
r,0

p
· n∞

∣∣∣∣∣
1
2

 , n∞ < 0;

∑
a>0: p-a,
[a`]∈BrC

∣∣∣∣∣X
([a`])
r,0

pn∞

∣∣∣∣∣
1
4

S
(`)
0∞(X

([a`])
r , n, a, µp)

a
I 1

2

4π

a

∣∣∣∣∣X
([a`])
r,0

p
· n∞

∣∣∣∣∣
1
2

 , n∞ > 0.

By Proposition 3.14, where we take m = Xr ≤ 0, the above expression is convergent. Therefore, by analytic

continuation, the series P0(z; p, s, 1
2 , r, µp) is convergent at s = 3

4 and has the Fourier expansion as above.

The expression (7.9) is deduced by combining (2.48), (2.45), Definition 2.11, and (1.18).

We combine the properties of the Maass-Poincaré series in the following proposition.

Proposition 7.3. Let P(z) denote either of P∞(z) := P∞(z; p, 3
4 ,

1
2 ,m, µp) or P0(z) := P0(z; p, 3

4 ,
1
2 , r, µp).

Then,

(1) For all γ ∈ Γ0(p), P(γz) = µp(γ)(cz + d)
1
2 P(z).

(2) For 1 ≤ ` ≤ p− 1, the `-th entry P (`)(z) of P(z) is a harmonic Maass form in H 1
2
(Γ0(p2) ∩ Γ1(p), νη).

(3) For 1 ≤ ` ≤ p− 1, P (`)(24z) is a harmonic Maass form in H 1
2
(Γ1(576p2), νθ).
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(4) The principal part of P∞(z; p, 3
4 ,

1
2 ,m, µp) at the cusp ∞ of Γ0(p) is

p−1∑
`=1

qm∞ csc(π`p )e`,

and at the cusp 0 of Γ0(p) is 0.

(5) For every integer r ≥ 0, the principal part of P
(`)
0 (z; p, 3

4 ,
1
2 , r, µp) at the cusp ∞ of Γ0(p) is 0, and at

the cusp 0 of Γ0(p) is

e(− 1
8 )p

1
4

∑
`∈BrC

qX
(`)
r,0e`.

Proof. First we prove (1) and (2). We have discussed the transformation laws of P∞(z; p, s, 1
2 ,m, µp) and

P0(z; p, s, 1
2 , r, µp) directly after their definitions. Since we have proved their convergence at s = 3

4 , by analytic

continuation, the transformation laws are kept. When we focus on each entry P (`)(z) and G(`)(z) := P (`)(24z),

the transformation laws

P (`)(γz) = νη(γ)(cz + d)
1
2P (`)(z), γ ∈ Γ0(p2) ∩ Γ1(p),

G(`)(γz) = νθ(γ)(cz + d)
1
2G(`)(z), γ ∈ Γ1(576p2)

follow from Lemma 2.15.

Recall the definition for the principal parts before (7.3). For (3), since ϕs,k(z) is an eigenfunction of

∆̃k with eigenvalue s(1− s) + k2−2k
4 , when k = 1

2 and s = 3
4 , we have ∆̃ 1

2
ϕ 3

4 ,
1
2
(z) = 0. Therefore, we have

∆̃ 1
2
P(z) = 0.

For (4), the principal part of P∞ at the cusp ∞ can be read from Proposition 7.1. Note that(
a b

c d

)
σ0 =

(
b
√
p −a/√p

d
√
p −c/√p

)

and d 6= 0 for γ =
(
a b
c d

)
∈ Γ0(p). As in Proposition 7.2, we can conclude that the principal part of P∞ at

the cusp 0 is 0.

For (5), the principal part of P0 at the cusp ∞ is just 0 from Proposition 7.2. To compute its principal

part at 0, recall (7.2) for the definition and (6.7). The Fourier expansion of P0 at the cusp 0 is given by

(
√
p z)−

1
2 P0(σ0z; p,

3
4 ,

1
2 , r, µp).

Then the contribution from c = 0 equals

2e(− 1
8 )p

1
4

√
π

(
√
p z)−

1
2

∑
`∈BrC

ϕ 3
4 ,

1
2
(X

(`)
r,0z)

(
√
p z)−

1
2

e`

= e(− 1
8 )p

1
4

∑
`∈BrC

(
1−

Γ( 1
2 , 4π|X

(`)
r,0 |y)

√
π

)
qX

(`)
r,0e`,

and (5) follows.
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7.2 Proof of Theorem 1.14

Fix a prime p ≥ 5 and let 1 ≤ ` ≤ p − 1. Recall the definition of G1( `p ; z) in (2.30) and G2( `p ; z) in (2.31).

Also recall that the holomorphic part of G1( `p ; z) has Fourier expansion

csc

(
π`

p

) ∞∑
n=0

A

(
`

p
;n

)
qn−

1
24 . (7.11)

Let the vector-valued function G1(z; p) be defined as

G1(z; p) :=

p−1∑
`=1

G1

(
`

p
; z

)
e`. (7.12)

By Proposition 2.10, G1(·; p) has the property

G1(γz; p) = µp(γ)(cz + d)
1
2 G1(z; p), for γ =

(
a b
c d

)
∈ Γ0(p). (7.13)

By (7.11) and (7.3), the principal part of G1(z; p) at the cusp ∞ of Γ0(p) is

csc

(
π`

p

) p−1∑
`=1

q−
1
24 e`. (7.14)

By [18, (3.13)], the behavior of G1 at the cusp 0 is given by

(
√
p z)−

1
2G1

(
`

p
;σ0z

)
= (
√
p z)−

1
2G1

(
`

p
;− 1

pz

)
= e(− 1

8 )p
1
4G2

(
`

p
; pz

)
. (7.15)

By the discussion after (7.3), the principal part of G1(z; p) at the cusp 0 can be derived from the principal

parts of G2( `p ; pz) at the cusp ∞ for 1 ≤ ` ≤ p− 1.

Recall that ε2 is defined in (2.29) by

ε2

(
`

p
; z

)
=


2q−

3
2 ( `p )

2
+ `

2p−
1
24 , `

p ∈ (0, 1
6 ),

2q−
3
2 (1− `p )

2
+ 1

2 (1− `p )− 1
24 , `

p ∈ ( 5
6 , 1),

0, otherwise.

Here 1
6 is the only root of the quadratic equation − 3

2x
2 + 1

2x−
1
24 = 0 hence the order of ε2( `p ; z) at ∞ is less

than 0 in the first two cases. By (2.31), the holomorphic part of G2( `p ; z) is

ε2

(
`

p
; z

)
+ 2q−

3
2 ( `p )

2
+ 3`

2p−
1
24M

(
`

p
; z

)
. (7.16)

Recall (2.37) that xr is the only solution in (0, 1
2 ) of the quadratic equation

−3

2
x2 +

(
1

2
+ r

)
x− 1

24
= 0.
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Now x0 = 1
6 and the contribution from ε2( `p ; z) to the principal part of G2( `p ; z) at ∞ is:

2q−
3
2 ( `p )

2
+ `

2p−
1
24 when 0 < `

p < x0,

2q−
3
2 (1− `p )

2
+ 1

2 (1− `p )− 1
24 when 1− x0 <

`
p < 1,

0, otherwise.

(7.17)

For the principal part of G2( `p ; z) at ∞ contributed from the part other than ε2, we need the Fourier

expansion of M( `p ; z) defined in (2.26):

Lemma 7.4. Let p ≥ 5 be a prime. When 1 ≤ ` ≤ p−1
2 , the first few terms of the Fourier expansion of

M( `p ; z) are

M

(
`

p
; z

)
=

b p2`c∑
T=0

q
T`
p +O(q

1
2 ).

When p+1
2 ≤ ` ≤ p− 1, we have 1 ≤ p− ` ≤ p−1

2 and the first few terms of the Fourier expansion of M( `p ; z)

are

M

(
`

p
; z

)
=

b p
2(p−`)c∑
T=0

qT(1− `p ) +O(q
1
2 ).

Proof. It suffices to prove the first case 1 ≤ ` ≤ p−1
2 because M( `p ; z) =M(1− `

p ; z) by (2.28). We have:

M

(
`

p
; z

)
=

∞∏
j=1

(1− qj)−1
∑
n∈Z

(−1)nqn+ `
p

1− qn+ `
p

q
3
2n

2+ 3
2n

=
(
1 + q + 2q2 +O(q3)

)∑
n≥0

(−1)nqn+ `
p q

3
2n

2+ 3
2n
∞∑
T=0

qT (n+ `
p )

+
∑
n<0
m=−n

(−1)m+1q
3
2m

2− 3
2m

∞∑
T=1

qT (m− `p )


= (1 +O(q))

((
q
`
p

∞∑
T=0

q
T`
p +O(q)

)
+

(
1 +

∞∑
T=1

qT (1− `p ) +O(q)

))

=

b p2`c∑
T=0

q
T`
p +O(q

1
2 ).

Proposition 7.5. Let p ≥ 5 be a prime, let xr be defined in (2.37), which is the only solution in (0, 1
2 ) of

the quadratic equation

−3

2
x2 +

(
1

2
+ r

)
x− 1

24
= 0

and let R be the maximal integer such that x−1
R < p. Then the sequence {xr : r ≥ 0} is strictly decreasing and

the principal part of G2( `p ; z) contributed from the term involving M( `p ; z) (i.e. the part other than ε2( `p ; z))
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equals

R∑
r=1


2q−

3
2 ( `p )

2
+( 1

2 +r) `p−
1
24 when 0 < `

p < xr,

2q−
3
2 (1− `p )

2
+( 1

2 +r)(1− `p )− 1
24 when 1− xr < `

p < 1

0 otherwise.

(7.18)

Proof. By (7.16), we see that the term

q−
3
2 ( `p )2+ `

2p−
1
24 · q

r`
p

contributes to the principal part if and only if 0 < `
p < xr, (otherwise the exponent will be positive). The

analogous case also holds for 1− `
p and 1− xr.

By Lemma 7.4, to ensure that the Fourier coefficient of q
r`
p in the Fourier expansion of M( `p ; z) is 1, it

suffices to show that r`
p < 1

2 for 0 < `
p < xr. Since xr ∈ (0, 1

2 ), we have

rxr =
3

2
x2
r −

1

2
xr +

1

24
=

3

2

(
xr −

1

6

)2

<
3

2
×
(

1

2
− 1

6

)2

=
1

6
.

Thus r`
p < rxr <

1
6 <

1
2 . The analogous case for 1− `

p can be proved in a similar way.

Combining (7.17) and (7.18), we get the principal part of G2( `p ; z) at the cusp ∞:

R∑
r=1


2q−

3
2 ( `p )

2
+( 1

2 +r) `p−
1
24 when 0 < `

p < xr,

2q−
3
2 (1− `p )

2
+( 1

2 +r)(1− `p )− 1
24 when 1− xr < `

p < 1

0 otherwise,

(7.19)

where R is the maximal integer such that x−1
R < p.

Remark. Here we give a hint about the relation between r and the prime p. Since x0 = 1
6 , when p ≤ 5,

there is no principal part of G2( `p ; z) at the cusp ∞, hence no principal part of G1 at the cusp 0. Since

1/x1 = 34.9706 · · · , for 7 ≤ p ≤ 31, we only have r = 0. Here is a table for first few conditions, where [a, b]

means the set of primes p for a ≤ p ≤ b.

Range of p p = 5 [7, 31] [37, 59] [61, 83] [89, 107] [109, 131]
Allowed r No r r = 0 r ≤ 1 r ≤ 2 r ≤ 3 r ≤ 4

Recall Proposition 7.3 about the principal parts of the Maass-Poincaré series. To match the principal

part at the cusp ∞, we take P∞(z; p, 3
4 ,

1
2 , 0, µp) due to (7.14).

For the cusp 0, we recall the definition of Xr in (2.40) and have

X(`)
r :=



⌈
− 3`2

2p + ( 1
2 + r)`− p

24

⌉
, when 0 < `

p < xr,⌈
− 3p

2 (1− `
p )2 + ( 1

2 + r)p(1− `
p )− p

24

⌉
, when 1− xr < `

p < 1,

0, otherwise and will never be used,

(7.20)

where dxe is the smallest integer ≥ x. Moreover, recalling xr and α
(`)
0 (denoted as α

(`)
+0 in (2.36) and (2.39)),

we see that

X
(`)
r,0 = −pδ`,p,1,r, X([a`])

r = d−pδ`,p,a,re , X
([a`])
r,0 = −pδ`,p,a,r,
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and X
(`)
r,0 match the order of the principal part of G2( `p ; pz) in (7.19). Combining Proposition 7.3, (7.14),

(7.15), and (7.19), we conclude the following proposition.

Proposition 7.6. With the choice of Xr in (2.40), the principal parts of

G1(z; p)−P∞(z; p, 3
4 ,

1
2 , 0, µp)− 2

∑
r≥0
x−1
r <p

P0(z; p, 3
4 ,

1
2 , r, µp)

are zero for both cusps ∞ and 0 of Γ0(p).

Now we start to prove Theorem 1.14.

Lemma 7.7. For Xr defined in (2.40), the function

G(z) := G1(z; p)−P∞(z; p, 3
4 ,

1
2 , 0, µp)− 2

∑
r≥0
x−1
r <p

P0(z; p, 3
4 ,

1
2 , r, µp)

is a holomorphic modular form of weight 1
2 on (Γ0(p), µp), i.e. G(z) ∈M 1

2
(Γ0(p), µp).

Proof. Recall Notation 2.5. By Lemma 2.15, (2.30), and Proposition 7.3, G(`)(z) is a harmonic Maass form

in H 1
2
(Γ0(p2) ∩ Γ1(p), νη) whose Fourier exponents are supported on n− 1

24 for n ∈ Z.

Since the principal part of G(z) is zero for both cusps ∞ and 0 of Γ0(p), the principal part of G(`)(z) for

every cusp of Γ0(p2) ∩ Γ1(p) is zero. By Proposition 7.3, we know that

G(`)(24z) ∈ H 1
2
(Γ1(576p2), νθ)

with Fourier exponents supported on 24n− 1. We also have that the principal part of G(`)(24z) for every cusp

of Γ1(p2) is still zero. By [21, Lemma 2.3], G(`)(24z) is a holomorphic modular form in M 1
2
(Γ1(576p2), νθ).

Since G(z) follows the modular transformation law on (Γ0(p), µp) and each entry G(`)(z) is holomorphic,

we get the desired result.

By Lemma 2.16, since G(`)(24z) has Fourier coefficients only supported on 24n− 1 for n ≥ 1, combining

the above lemma with Lemma 2.17 we have

Corollary 7.8. G(z) = 0.

Proof of Theorem 1.14. The theorem follows directly by combining Corollary 7.8, Proposition 7.1 and Propo-

sition 7.2. Note that the n-th Fourier coefficient of G(`)(z) is csc(π`p )A( `p ;n), hence we need to multiply the

Fourier expansion of the Maass-Poincaré series by sin(π`p ) to get (1.43).

The proof above shows that A( `p ;n) can be written in terms of the sums of Kloosterman sums (2.43) and

(2.48). In the following two subsections, we will prove the claim that Bringmann’s asymptotic formula (1.41),

when summing up to infinity, matches our exact formula (1.43). To be precise, we will show that the Fourier

expansion of the `-th component of P∞ matches the first sum in (1.41), and the Fourier expansion of the

`-th component of P0 matches the second sum on r in (1.41).
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7.2.1 Contribution from P∞

Recall that for a prime p ≥ 5, a positive integer c such that p|c, and 0 < d < c such that (d, c) = 1, the

Dedekind sum s(d, c) is defined in (1.18). As c is always clear in this subsection, we denote d′ as d′c for

simplicity, i.e. it is defined by dd′ ≡ −1 (mod c) if c is odd and dd′ ≡ −1 (mod 2c) if c is even. Also recall

the notation that a is given by 0 < a < c with ad ≡ 1 (mod c) and [a`] is defined by 0 ≤ [a`] < p such that

[a`] ≡ a` (mod p).

In this subsection we prove (1.44) in the Remark of Theorem 1.14. We conjugate (1.41) since its left side

is real and see the first sum is

2πe(− 1
8 )

(24n− 1)
1
4

∑
p|c≤

√
n

e(− 1
8 )B`,p,c(−n, 0)

c
I 1

2

(
π
√

24n− 1

6c

)
.

Then (1.37) gives

B`,p,c(−n, 0) =
∑

d (mod c)∗

(−1)`c+1
sin(π`p )

sin(π`d
′

p )
exp

(
−πis(d, c) +

3πi`2cd′

p2

)
e

(
nd

c

)
.

On the other hand, recall (7.5):

S(`)
∞∞(m,n, c, µp) = e(− 1

8 )
∑

d (mod c)∗

ad≡1 (mod c)

µ(c, d, [a`], p)

sin(π[a`]
p )

e−πis(d,c)e

(
ma+ nd

c

)
.

To prove (1.44), it suffices to show that for all d (mod c)∗, we have

(−1)`c+1

sin(π`d
′

p )
exp

(
3πicd′`2

p2

)
=
µ(c, d, [a`], p)

sin(π[a`]
p )

. (7.21)

We will show that both sides are equal to

(−1)`c

sin(πa`p )
exp

(
−3πica`2

p2

)
. (7.22)

First we prove that the left side of (7.21) equals (7.22). When c is odd, we write c = (2k + 1)p for some

integer k. Since dd′ ≡ −1 (mod c), we can pick d′ = c− a. Then

(−1)`c+1

sin(π`d
′

p )
exp

(
3πi`2cd′

p2

)
=

−(−1)`

sin(π`cp −
π`a
p )

exp

(
3πi`2c2

p2
− 3πi`2ca

p2

)
=

−(−1)`

−(−1)`(2k+1) sin(π`ap )
(−1)`

2(2k+1)2 exp

(
−3πi`2ca

p2

)
=

(−1)`

sin(π`ap )
exp

(
−3πi`2ca

p2

)
,

which equals (7.22). When c is even, we write c = 2kp for some positive integer k. We pick 0 < a < 2kp for

ad ≡ 1 (mod 2kp) and 0 < d′ < 4kp for d′d ≡ −1 (mod 4kp). Observe that (7.22) is the same if we change a

to a± 2kp, so we can pick a = 2c− d′ here and a similar process shows that the left side of (7.21) equals
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(7.22) when c is even.

Next we prove that the right side of (7.21) equals (7.22). Define the integer t ≥ 0 by [a`] = a`− tp, k by

c = kp, and b by ad = 1 + bc. By (2.34), we have

µ(c, d, [a`], p)

sin(π[a`]
p )

= exp

(
−3πicd(a`− tp)2

p2

)
(−1)

c(a`−tp)
p (−1)b

d(a`−tp)
p c

/
sin

(
πa`

p
− πt

)
= exp

(
−3πica`2

p2
− 3πicabc`2

p2
− 3πicdt2

)
(−1)a`k−tc+b

`
p+b`k−tdc+t

/
sin

(
πa`

p

)
.

The above formula equals exp(− 3πica`2

p2 )/ sin(πa`p ) times (−1) to the power of

ab`2k2 − cdt2 + a`k − tc+ b`k − td+ t

≡ ab`k + cdt+ a`k + tc+ b`k + td+ t

≡ (a+ 1)(b+ 1)`k + `k + (c+ 1)(d+ 1)t

≡ `k ≡ `c (mod 2).

The last step uses (x+ 1)(y + 1) ≡ 0 (mod 2) whenever (x, y) = 1.

Remark. From the proof above, for p|c and 0 < [a`] = a`− tp < p, we also have

µ(c, d, [a`], p) = exp

(
−3πica`2

p2

)
(−1)`c+t. (7.23)

This formula is helpful in Chapter 8.

7.2.2 Contribution from P0

In this subsection we prove (1.45) in the Remark of Theorem 1.14. Recall the definition of δ`,p,a,r in (1.39),

of m`,p,a,r in (1.40), of α
(`)
0 in (2.36) and of Xr in (2.40). In Bringmann’s asymptotic formula (1.41), the

second sum on r (after conjugation) becomes

4π sin(π`p )

(n− 1
24 )

1
4

∑
r≥0

∑
a>0: p-a,
δ`,p,a,r>0

D`,p,a,r(−n,m`,p,a,r)

a · δ−
1
4

`,p,a,r

I 1
2

(
4π

a

∣∣∣∣δ`,p,a,r (n− 1

24

)∣∣∣∣ 12
)
.

Recall (7.9):

S
(`)
0∞(X([a`])

r , n, a, µp; r) = e(− 1
8 )

∑
b: b (mod a)∗

0<c<pa, p|c
s.t. ad−bc=1

µ(c, d, [a`], p)e−πis(d,c)e

(
−X([a`])

r,0
c
p + n∞b

a
+
a+ d

24c

)
.

We denote b′a as b′ for simplicity, i.e. b′ is defined by bb′ ≡ −1 (mod a) if a is odd and by bb′ ≡ −1 (mod 2a)

if a is even. Moreover, we still denote positive integers t by a`− [a`] = tp and k by c = kp.
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We have c ≡ b′ (mod a) for
(
a b
c d

)
∈ Γ0(p). Hence we can rewrite D`,p,a,r as:

D`,p,a,r(−n,m`,p,a,r) = (−1)a`+[a`]
∑

b (mod a)∗

ωb,a e

(
m`,p,a,rb′ − nb

a

)

= (−1)a`−[a`]
∑

b (mod a)∗

e−πis(b,a)e

(
−m`,p,a,rc+ nb

a

)
.

For γ =
(
a b
c d

)
∈ Γ0(p), with our choice c ≥ 0 and a > 0, we need the relationship between e(−πis(b, a)) and

e−πis(d,c). Denote S =
(

0 −1
1 0

)
. Recall w 1

2
in Definition 1.1. We have

w 1
2
(S, γ) = (cz + d)

1
2

(
az + b

cz + d

) 1
2

(az + b)−
1
2 = 1

because cz + b, az+bcz+d and az + b are in H for z ∈ H. Therefore, we have νη(Sγ) = νη(S)νη(γ). With the help

of νη(S) = e(− 1
8 ) by (1.18), we get

e−πis(b,a) = e(− 1
8 )e−πis(d,c)e(a+d

24c + c−b
24a ).

Then we continue:

D`,p,a,r(−n,m`,p,a,r) = (−1)tpe(− 1
8 )

∑
b (mod a)∗

ωd,c e

(
−m`,p,a,rc+ nb

a
+
a+ d

24c
+
c− b
24a

)

= (−1)te(− 1
8 )

∑
b (mod a)∗

ωd,c e

(
a+ d

24c

)
e

(
( 1

24 −m`,p,a,r)c+ (n− 1
24 )b

a

)
.

Compare with the formula of S
(`)
0∞(X

([a`])
r , n, c, µp) where X

([a`])
r,0 = −pδ`,p,a,r, we are left to prove

µ(c, d, [a`], p) e

(
δ`,p,a,rc

a

)
= (−1)te

(
( 1

24 −m`,p,a,r)c

a

)
. (7.24)

By (7.23), when 0 < [a`]
p < 1

6 , recalling [a`] = a`− tp and c = kp, we have

µ(c, d, [a`], p) e

(
(δ`,p,a,r − 1

24 )c

a

)
= (−1)`c+te

(
−3ca`2

2p2
− c(1 + 2r)(a`− tp)

2ap
+

3c(a`− tp)2

2ap2

)
= (−1)`k+te

(
−3ca`2

2p2
− k`(1 + 2r)

2
+
ct(1 + 2r)

2a
+

3ca`2

2p2
− 3c`t

p
+

3ct2

2a

)
= (−1)te

(
c

a

(
(1 + 2r)t

2
+

3

2
t2
))

.

On the other hand, by (1.40),

−m`,p,a,r =
1

2p2

(
3(a`− [a`])2 + p(1 + 2r)(a`− [a`])

)
=

3

2
t2 +

(1 + 2r)t

2
.
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This gives (7.24). The proof when 5
6 <

[a`]
p < 1 is similar: we have

µ(c, d, [a`], p) e

(
(δ`,p,a,r − 1

24 )c

a

)
= (−1)`c+te

(
−3ca`2

2p2
− 5c(a`− tp)

2ap
+

3c(a`− tp)2

2ap2
+ (1− r) c

a
+
cr(a`− tp)

ap

)
= (−1)`k+te

(
−5k`

2
+

5ct

2a
− 3k`t+

3ct2

2a
+ (1− r) c

a
+ rk`− rt c

a

)
= (−1)te

(
c

a

(
(5− 2r)t

2
+

3

2
t2 + 1− r

))
.

When 5
6 <

[a`]
p < 1, by (1.40) we also have

−m`,p,a,r =
3

2
t2 +

(5− 2r)t

2
+ 1− r.

Now we still get (7.24) and (1.45) follows.

Remark. From the proof we can rewrite

S
(`)
0∞

(
d−pδ`,p,a,re , n, a, µ

)
= (−1)a`−[a`]

∑
b (mod a)∗

e−πis(b,a)e

(
−m`,p,a,rc+ nb

a

)
(7.25)

where 0 < [a`] = a`− tp < p and

−m`,p,a,r =

{
3
2 t

2 + 1+2r
2 t, when 0 < [a`]

p < 1
6 ,

3
2 t

2 + 5−2r
2 t+ 1− r, when 5

6 <
[a`]
p < 1.

This expression is helpful in the proof of Theorem 1.15 in Chapter 8 for the case p = 7.
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Chapter 8

Equidistribution of ranks modulo 5

and 7

In this chapter we prove Theorem 1.15, where Corollary 1.16 is a direct result once we have the exact formula

(Theorem 1.14). This proof is length and consists of checking many cases. However, the proof only uses basic

properties of congruences and Kronecker symbols. There are many tables recording data of arguments for

complex numbers among the proof.

8.1 Proof of Theorem 1.15, claim (1)

In this section we prove claim (1) of Theorem 1.15, which is for the case p = 5. In Proposition 7.1 we find

S(`)
∞∞(0, 5n+ 4, c, µp) = e(− 1

8 )
∑

d (mod c)∗

ad≡1 (mod c)

µ(c, d, [a`], 5)

sin(π[a`]
5 )

e−πis(d,c)e

(
(5n+ 4)d

c

)
.

We only consider ` = 1, 2 because A( `p ;n) = A(1− `
p ;n).

Denote c′ by c = 5c′. For r (mod c′)∗, we define

V (r, c) := {d (mod c)∗ : d ≡ r (mod c′)}.

For example, V (1, 30) = {d (mod 30)∗ : d ≡ 1, 7, 13, 19 (mod 30)} and V (4, 25) = {d (mod 25)∗ : d ≡
4, 9, 14, 19, 24 (mod 25)}. We will not restrict 0 < d < c in V (r, c) because changing d to d+ c will not affect

the value of our Kloosterman sums. Clearly, |V (r, c)| = 4 if 5‖c and |V (r, c)| = 5 if 25|c. Moreover, (Z/cZ)∗

is the disjoint union

(Z/cZ)∗ =
⋃

r (mod c′)∗

V (r, c), where V (r1, c) ∩ V (r2, c) = ∅ if r1 6≡ r2 (mod c′).

From (7.21) and (7.22) where p = 5, we have

µ(c, d, [a`], 5)

sin(π[a`]
5 )

=
(−1)`c

sin(πa`5 )
exp

(
−3πic′a`2

5

)
.
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We claim that for ` = 1, 2, the sum on V (r, c) satisfies

sr,c :=
∑

d∈V (r,c)

e
(
− 3c′a`2

10

)
sin(πa`5 )

e−πis(d,c)e

(
4d

c

)
= 0. (8.1)

If (8.1) is true, then

S(`)
∞∞(0, 5n+ 4, c, µp) = e(− 1

8 )(−1)`c
∑

r (mod c′)∗

sr,ce
(nr
c′

)
(−1)`c = 0

for all n ∈ Z, ` = 1, 2, and we have proved Theorem 1.15 in the case p = 5.

In the following subsections §7.1-§7.4, we prove (8.1) when 5‖c. In §7.5, we prove (8.1) when 25|c. Suppose

now that 5‖c. Since |V (r, c)| = 4, let β ∈ {1, 2, 3, 4} such that βc′ ≡ 1 (mod 5) and we make a special choice

of V (r, c) as

V (r, c) = {d1, d2, d3, d4} where dj ≡ j (mod 5) and dj+1 = d1 + jβc′. (8.2)

We also take aj such that aj ≡ j (mod 5), aj+1 = a1 + jβc′, and

aj{5}dj ≡ 1 (mod c) because j{5} · j ≡ 1 (mod 5). (8.3)

These choices do not affect the sum (8.1) because sr,c has period c in both a and d. In (8.1), we denote each

single summation term as

P (d) :=
e
(
− 3c′a`2

10

)
sin(πa`5 )

· e
(
−12cs(d, c)

24c

)
· e
(

4d

c

)
=: P1(d) · P2(d) · P3(d) (8.4)

where P1(d) := e(− 3c′a`2

10 )/ sin(πa`5 ), P2 := exp(−πis(d, c)), and P3 := e( 4d
c ).

Remark. We keep 24c at the denominator of P2(d) because the congruence properties of the Dedekind sum

are of the form 12cs(d, c). See (8.8)-(8.11) for details.

We claim that the set of points P (d) for d ∈ V (r, c) must have the relative position as one of the following

six configurations. Here 0 < dj < c for simplicity but we use (8.2) in the proof.

• ` = 1:

d1=46
d4=24

d3=13 d2=2

ℓ=1, points for V(2,55)

d4=79

d1=61
d3=43d2=7

ℓ=1, points for V(7,90)

d1=91

d2=72
d3=53

d4=34

ℓ=1, points for V(15,95)

• ` = 2:
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d4=54

d1=41

d3=28

d2=2

ℓ=2, points for V(2,65)

d3=53

d2=42
d1=31d4=9

ℓ=2, points for V(9,55)

d1=31

d4=24

d2=17

d3=3

ℓ=2, points for V(3,35)

Here we explain the styles. Each graph above has two circles with inner one of radius csc( 2π
5 ) and outer

one with radius csc(π5 ). When ` = 1, the value of P (d1) and P (d4) will be on the outer circle (P (d2) and

P (d3) on the inner circle) because the term P1(dj) has denominator sin(
πaj`

5 ). When ` = 2, P (d1) and P (d4)

will be on the inner circle.

We describe the relative argument differences via the following notations. Denote

Argj(du → dv; `), for j ∈ {1, 2, 3}, u, v ∈ {1, 2, 3, 4}, and ` ∈ {1, 2} (8.5)

be the argument difference (as the proportion of 2π, positive when going counter-clockwise) contributed

from Pj going from du to dv when ` ∈ {1, 2}. To be precise, if we denote Pj(du) = Rj,u exp(iΘj,u) for

Rj,u,Θj,u ∈ R, then

Argj(du → dv; `) = α ⇔ Θj,v −Θj,u = α · 2π + 2kπ for some k ∈ Z.

We say two argument differences equal: Argj(du → dv; `) = Argj(dw → dx; `) if their difference is an integer.

Although the P2 and P3 terms are not affected by the value of ` in (8.4), we still use the notation

Arg2(du → dv; `) to indicate the different cases for `. Moreover, we define

Arg(du → dv; `) :=
3∑
j=1

Argj(du → dv; `) (8.6)

as the argument difference in total.

The following condition makes the sum of four points P (d) for d ∈ V (r, c) on each graph to be zero:

Condition 8.1. We have the following six styles for the relative position of these four points.

• ` = 1. First graph style: the arguments (as a proportion of 2π) going d1 → d2 → d3 → d4 → d1 are 3
10 ,

1
10 , 3

10 , and 3
10 , respectively. The second graph style is that all the argument differences are 1

2 , while the

third graph style has the reversed order of rotation compared with the first one.

Arg(du → dv; 1)↘ d1 → d2 → d3 → d4 → d1

c′ ≡ 1 (mod 5) 3
10

1
10

3
10

3
10

c′ ≡ 2, 3 (mod 5) 1
2

1
2

1
2

1
2

c′ ≡ 4 (mod 5) − 3
10 − 1

10 − 3
10 − 3

10
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• ` = 2. Here are the styles for the fourth, fifth and sixth graphs.

Arg(du → dv; 2)↘ d1 → d2 → d3 → d4 → d1

c′ ≡ 3 (mod 5) − 2
5 − 3

10 − 2
5

1
10

c′ ≡ 1, 4 (mod 5) 0 1
2 0 1

2

c′ ≡ 2 (mod 5) 2
5

3
10

2
5 − 1

10

One can check that, whenever the four points on C satisfy any of the above cases of relative argument

differences and corresponding radii, the sum of them becomes 0. This can be explained by

cos( π10 )

sin( 2π
5 )

=
cos( 3π

10 )

sin(π5 )
= 1, where

1

sin(π5 )
and

1

sin( 2π
5 )

are the radii.

In other words, we prove (8.1) by showing that for 5‖c and every r (mod c′)∗, the four terms in (8.1) has one

of the styles in Condition 8.1.

Before we divide into the cases, we first claim the following lemma:

Lemma 8.2. For ` ∈ {1, 2}, we have

Arg(d1 → d2; `) + Arg(d4 → d3; `) = 0 and Arg(d1 → d3; `) + Arg(d4 → d2; `) = 0. (8.7)

Granted the above reduction, to prove that each case of the argument differences are one of the cases in

Condition 8.1, we only need to verify that

Arg(d1 → d4; `) and Arg(d1 → d2; `) for ` = 1, 2

satisfy Condition 8.1. We prove this by enumerating all the cases. We can list the argument differences for

Arg1 and Arg3, but for Arg2, we require the following congruence properties of the Dedekind sum from [60,

(4.2)-(4.5)]. Here (d, c) = 1 and d{m} is the inverse of d (mod m) (see Notation 2.9):

2θcs(d, c) ∈ Z, where θ = gcd(c, 3), (8.8)

12cs(d, c) ≡ d+ d{θc} (mod θc), (8.9)

12cs(d, c) ≡ c+ 1− 2(dc ) (mod 8), if c is odd, (8.10)

12cs(d, c) ≡ d+
(
c2 + 3c+ 1 + 2c( cd )

)
d{8×2λ} (mod 8× 2λ), if 2λ‖c for λ ≥ 1. (8.11)

These congruences determine 12cs(d, c) (mod 24c) uniquely in all the cases (2|c or 2 - c, 3|c or 3 - c), which is

the reason why we keep 24c in the denominator of P2(d).

Proof of Lemma 8.2. Note that

Arg(du → dv; `) = Arg(du → dw; `) + Arg(dw → dv; `)

for all u, v, w ∈ {1, 2, 3, 4}. Then it suffices to prove

Arg(d1 → d2; `) = Arg(d3 → d4; `).
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Recall our notation for dj and aj in (8.2). Since a3 − a1 = a4 − a2 = 2βc′, one can show Arg1(d1 → d2; `) =

Arg1(d3 → d4; `) by

sgn
(
sin(πa3`5 )/ sin(πa1`5 )

)
= sgn

(
sin(πa4`5 )/ sin(πa2`5 )

)
= 1.

It is also easy to show Arg3(d1 → d2; `) = Arg3(d3 → d4; `). For Arg2, we apply (8.9), (8.10) and (8.11) with

the Chinese Remainder Theorem to show that

12cs(d2, c)− 12cs(d1, c) ≡ 12cs(d4, c)− 12cs(d3, c) for all the corresponding congruences.

When gcd(c, 3) = 1, we have

12cs(d2, c)− 12cs(d1, c) ≡ d2 + a3 − d1 − a1 ≡ 3βc′ (mod c),

12cs(d4, c)− 12cs(d3, c) ≡ d4 + a4 − d3 − a2 ≡ 3βc′ (mod c),

12cs(d2, c)− 12cs(d1, c) ≡ 12cs(d4, c)− 12cs(d3, c) ≡ 0 (mod 6).

When 3|c, we apply the congruence

(x+ y){m} − x{m} ≡ −y(x+ y){m} · x{m} (mod m) (8.12)

to compute

d2 + d2{3c} − d1 − d1{3c} ≡ βc′(1− d2{3c} · d1{3c}) (mod 3c),

d4 + d4{3c} − d3 − d3{3c} ≡ βc′(1− d4{3c} · d3{3c}) (mod 3c),

which imply

12cs(d2, c)− 12cs(d1, c) ≡ 12cs(d4, c)− 12cs(d3, c) ≡ 0 (mod c′).

by (8.9). After dividing by c′ (recall that the denominator of P2(d) is 24c), we have

60s(d2, c)− 60s(d1, c) ≡ β(1− d2{3c} · d1{3c}) ≡ β(1− a3a1) (mod 15),

60s(d4, c)− 60s(d3, c) ≡ β(1− d4{3c} · d3{3c}) ≡ β(1− a4a2) (mod 15),

because of (8.3) and x{un} ≡ x{vn} (mod n). Since a3 ≡ a1 (mod 3) and a4 ≡ a2 (mod 3), we have

a3a1 ≡ a4a2 ≡ 1 (mod 3). Moreover, a3a1 ≡ a4a2 ≡ 3 (mod 5). Hence a3a1 ≡ a4a2 ≡ 13 (mod 15) and we

get

60s(d2, c)− 60s(d1, c) ≡ 60s(d4, c)− 60s(d3, c) ≡ 3β (mod 15).

When c is odd, by (8.10) and dj1 ≡ dj2 (mod c′), we have

12cs(d2, c)− 12cs(d1, c) ≡ 2(d1c )− 2(d1c ) ≡ 2( 1
5 )(d1c′ )− 2( 2

5 )(d2c′ ) ≡ 4 (mod 8),

12cs(d4, c)− 12cs(d3, c) ≡ 2(d4c )− 2(d3c ) ≡ 2( 4
5 )(d4c′ )− 2( 3

5 )(d3c′ ) ≡ 4 (mod 8).
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When c is even and 2λ‖c for λ ≥ 1, by (8.11) we have

12cs(d2, c)− 12cs(d1, c) ≡ d2 + (c2 + 3c+ 1)d2{8×2λ} + 2c( c
d2

)d2{8×2λ}

− d1 + (c2 + 3c+ 1)d1{8×2λ} + 2c( c
d1

)d1{8×2λ}

≡ βc′(1− d2{8×2λ} · d1{8×2λ})

+ 2c( c
d2

)d2{8×2λ} − 2c( c
d1

)d1{8×2λ} (mod 8× 2λ)

Hence above the difference is a multiple of c′. Dividing c′ and by x2 ≡ 1 (mod 8) for odd x we have

60s(d2, c)− 60s(d1, c) ≡ β(1− (c2 + 3c+ 1)d2d1) + 2( c
d2

)d2 − 2( c
d1

)d1 (mod 8).

Similarly, we also have

60s(d4, c)− 60s(d3, c) ≡ β(1− (c2 + 3c+ 1)d4d3) + 2( c
d4

)d4 − 2( c
d3

)d3 (mod 8).

Dividing into cases for 4|c or 2‖c with c′ ≡ 2 or 6 (mod 8), one can conclude

d2d1 ≡ d4d3 (mod 8).

For the remaining part, we only need to determine ( c
dj

)dj ≡ ±1 (mod 4) for j ∈ {1, 2, 3, 4}. Since

d3 ≡ d1 (mod 4) and d2 ≡ d4 (mod 4), it is not hard to show that

( c
d2

)d2 − ( c
d1

)d1 ≡ ( c
d4

)d4 − ( c
d3

)d3 (mod 4).

Combining all the congruence equations in this proof, we have shown that

Arg2(d1 → d2; `) = Arg2(d3 → d4; `) for ` ∈ {1, 2}

by proving
12cs(d2, c)− 12cs(d1, c)

24c
− 12cs(d4, c)− 12cs(d3, c)

24c
∈ Z

in all the cases for c (2|c or 2 - c, 3|c or 3 - c). The lemma follows.

8.1.1 2 - c′, 3 - c′, and 5 - c′

We first deal with the case for c′ ≡ 1, 7, 11, 13, 17, 19, 23, 29 (mod 30). Recall our notations

d4 = d1 + 3βc′, d2 = d1 + βc′, a4 = a1 + 3βc′, a3 = a1 + 2βc′, βc′ ≡ 1 (mod 5).

The argument differences Argj(d1 → d4; `) for j = 1, 2, 3 are given by the arguments of

e
(
− 9

10βc
′2`2
)

sgn
(
sin(πa4`5 )/ sin(πa1`5 )

) , e

(
−12cs(d4, c)− 12cs(d1, c)

24c

)
, and e

(
2β

5

)
,
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respectively. First we have

sgn
(
sin(πa4`5 )/ sin(πa1`5 )

)
= −1 whenever

{
` = 1

3βc′ ≡ 8 (mod 10)
or ` = 2. (8.13)

This is easy to prove because 3βc′ × 2 ≡ 6 (mod 10).

By (8.9), we have θ = 1 and

− 12cs(d4, c) + 12cs(d1, c) ≡ −d4 − a4 + d1 + a1 ≡ −6βc′ ≡ −βc′ (mod c). (8.14)

Moreover, we have −12cs(d4, c) + 12cs(d1, c) ≡ 0 (mod 6) and

−12cs(d4, c) + 12cs(d1, c) ≡ 2
(
(d4c )− (d1c )

)
≡ 2

(
(d45 )(d4c′ )− (d15 )(d1c′ )

)
≡ 0 (mod 8).

Here we have used (
dj
5 ) = 1 for j = 1, 4 and dj ≡ d1 (mod c′) for all j. Then,

− 12cs(d4, c) + 12cs(d1, c) ≡ 0 (mod 24). (8.15)

Combining (8.14) and (8.15), since c′ is odd, we can divide 24c′ on both the denominator and numerator in

P2. By 24−1 = 4, we get

Arg2(d1 → d4; `) =
β

5
.

Now we have Table 8.1. In the row of Arg1(d1 → d4; 1), we see + 1
2 because the sign difference

sgn
(
sin(πa4`5 )/ sin(πa1`5 )

)
= −1 when 3βc′ ≡ 8 (mod 10). The Arg1(d1 → d4; 2) always need + 1

2 be-

cause 3βc′ × 2 ≡ 6 (mod 10). The upper-half table is for the case ` = 1 and the lower-half table is for ` = 2.

c′ (mod 30) 1 7 11 13 17 19 23 29
β 1 3 1 2 3 4 2 4

3βc′ (mod 10) 3 3 3 8 3 8 8 8
−9βc′2 (mod 10) 1 7 1 8 7 4 7 4
Arg1(d1 → d4; 1) 1

10 − 3
10

1
10 − 2

10 + 1
2 − 3

10 − 6
10 + 1

2 − 3
10 + 1

2 − 6
10 + 1

2

Arg2(d1 → d4; 1) 1
5

3
5

1
5

2
5

3
5

4
5

2
5

4
5

Arg3(d1 → d4; 1) 2
5

1
5

2
5

4
5

1
5

3
5

4
5

3
5

Total Arg(d1 → d4; 1) − 3
10

1
2 − 3

10
1
2

1
2

3
10

1
2

3
10

3βc′ (mod 10) 3 3 3 8 3 8 8 8
−18βc′2 ≡ 2c′ (mod 5) 2 4 2 1 4 3 1 3

Arg1(d1 → d4; 2) : 1
2 + 2c′

5 − 1
10

3
10 − 1

10 − 3
10

3
10

1
10 − 3

10
1
10

Arg2(d1 → d4; 2) 1
5

3
5

1
5

2
5

3
5

4
5

2
5

4
5

Arg3(d1 → d4; 2) 2
5

1
5

2
5

4
5

1
5

3
5

4
5

3
5

Total Arg(d1 → d4; 2) 1
2

1
10

1
2 − 1

10
1
10

1
2 − 1

10
1
2

Table 8.1: Table for Arg(d1 → d4; `); 2 - c, 3 - c, 5 - c.

For Argj(d1 → d2; `), recall a3d2 ≡ 1 (mod c). The argument differences Argj(d1 → d2; `) for j = 1, 2, 3
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are given by
e
(
− 3

5βc
′2`2
)

sgn
(
sin(πa3`5 )/ sin(πa1`5 )

) , e

(
−12cs(d2, c)− 12cs(d1, c)

24c

)
, e

(
4β

5

)
,

respectively. Since 2βc′` ≡ 2` (mod 10), we always have

sgn
(
sin(πa35 )/ sin(πa15 )

)
= 1 and sgn

(
sin( 2πa3

5 )/ sin( 2πa1
5 )
)

= −1. (8.16)

Moreover, from (8.9) we have

12cs(d2, c)− 12cs(d1, c) ≡ d2 + a3 − d1 − a1 ≡ 3βc′ (mod c), (8.17)

12cs(d2, c)− 12cs(d1, c) ≡ −2
(
−(d2c′ )− (d1c′ )

)
≡ 4 (mod 8),

12cs(d2, c)− 12cs(d1, c) ≡ 0 (mod 6), and

12cs(d2, c)− 12cs(d1, c) ≡ 12 (mod 24). (8.18)

Combining (8.17) and (8.18), we divide by c′ and determine the unique value for

−(60s(d2, c)− 60s(d1, c)) congruent to − 3β (mod 5) and 12 (mod 24)

modulo 120. This gives the contribution of the argument difference from P2. Now we can make Table 8.2.

c′ (mod 30) 1 7 11 13 17 19 23 29
β 1 3 1 2 3 4 2 4

−3c′ (mod 5) 2 4 2 1 4 3 1 3
Arg1(d1 → d2; 1) 2

5
4
5

2
5

1
5

4
5

3
5

1
5

3
5

Arg2(d1 → d2; 1) 1
10

3
10

1
10 − 3

10
3
10 − 1

10 − 3
10 − 1

10

Arg3(d1 → d2; 1) 4
5

2
5

4
5

3
5

2
5

1
5

3
5

1
5

Total Arg(d1 → d2; 1) 3
10

1
2

3
10

1
2

1
2 − 3

10
1
2 − 3

10

−3c′ × 4 (mod 5) 3 1 3 4 1 2 4 2

Arg1(d1 → d2; 2) : 1
2 −

12c′

5
1
10 − 3

10
1
10

3
10 - 3

10 − 1
10

3
10 − 1

10

Arg2(d1 → d2; 2) 1
10

3
10

1
10 − 3

10
3
10 − 1

10 − 3
10 − 1

10

Arg3(d1 → d2; 2) 4
5

2
5

4
5

3
5

2
5

1
5

3
5

1
5

Total Arg(d1 → d2; 2) 0 2
5 0 − 2

5
2
5 0 − 2

5 0

Table 8.2: Table for Arg(d1 → d2; `); 2 - c, 3 - c, 5 - c.

Combining Table 8.1 and Table 8.2, we see that Arg(d1 → d4; `) and Arg(d1 → d2; `) for ` = 1, 2 satisfy

the styles in Condition 8.1. This finishes the proof when 2 - c′, 3 - c′ and 5 - c′.

8.1.2 2 - c′, 3|c′, and 5 - c′

These are the cases for c′ ≡ 3, 9, 21, 27 (mod 30). For Arg1(d1 → d4; `) we use (8.13):

sgn
(
sin(πa4`5 )/ sin(πa1`5 )

)
= −1 whenever

{
` = 1

3βc′ ≡ 8 (mod 10)
or ` = 2.

126



For Arg2(d1 → d4; `), we need the congruence equality (8.12). By (8.9), we have

12cs(d4, c)− 12cs(d1, c) ≡ d4 + d4{3c} − d1 − d1{3c} ≡ 3βc′(1− d4{3c} · d1{3c}) (mod 3c). (8.19)

By (8.10) we also have

12cs(d4, c)− 12cs(d1, c) ≡ 0 (mod 8). (8.20)

Dividing the numerator and denominator of P2 by 24c′, we observe that

− 5
2 (s(d4, c)− s(d1, c)) ≡ −8{5}β(1− d4{3c} · d1{3c}) ≡ β (mod 5) (8.21)

because dj{3c} ≡ dj{5} ≡ j (mod 5) for j = 1, 4. Now we get Arg2(d1 → d4; `) = β
5 . Since Arg3(d1 → d4; `) =

2β
5 , we have Table 8.3.

c′ (mod 30) 3 9 21 27
β 2 4 1 3

3βc′ (mod 10) 8 8 3 3
−9βc′2 (mod 10) 8 4 1 7
Arg1(d1 → d4; 1) − 2

10 + 1
2

4
10 −

1
2

1
10 − 3

10

(Arg2 + Arg3)(d1 → d4; 1): 3β
5

1
5

2
5

3
5

4
5

Total Arg(d1 → d4; 1) 1
2

3
10 − 3

10
1
2

3βc′ (mod 10) 8 8 3 3
−18βc′2 (mod 5) 1 3 2 4
Arg1(d1 → d4; 2) − 3

10
1
10 − 1

10
3
10

(Arg2 + Arg3)(d1 → d4; 2): 3β
5

1
5

2
5

3
5

4
5

Total Arg(d1 → d4; 2) − 1
10

1
2

1
2

1
10

Table 8.3: Table for Arg(d1 → d4; `); 2 - c, 3|c, 5 - c.

Next we investigate Arg(d1 → d2; `). For Arg1(d1 → d2; `), we use (8.16):

sgn
(
sin(πa35 )/ sin(πa15 )

)
= 1 and sgn

(
sin( 2πa3

5 )/ sin( 2πa1
5 )
)

= −1

By (8.9), we have

12cs(d2, c)− 12cs(d1, c) ≡ d2 + d2{3c} − d1 − d1{3c} ≡ βc′(1− d2{3c} · d1{3c}) (mod 3c). (8.22)

As 15|3c, after dividing by c′ we have

60s(d2, c)− 60s(d1, c) ≡ β(1− d2{15} · d1{15}) ≡ β(1− a3a1) (mod 15). (8.23)

Since a3 ≡ a1 (mod 3), we have a3a1 ≡ 1 (mod 3). We also have a3a1 ≡ 3 (mod 5) by (8.3), then

a3a1 ≡ 13 (mod 15) and

− (60s(d2, c)− 60s(d1, c)) ≡ −3β (mod 15). (8.24)

By (8.10) we have

12cs(d4, c)− 12cs(d1, c) ≡ 4 (mod 8). (8.25)
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The congruences (8.24) and (8.25) determines a unique value modulo 120.

c′ (mod 30) 3 9 21 27
β 2 4 1 3

−3c′ (mod 5) 1 3 2 4
Arg1(d1 → d2; 1) 1

5
3
5

2
5

4
5

Arg2(d1 → d2; 1) − 3
10 − 1

10
1
10

3
10

Arg3(d1 → d2; 1) 3
5

1
5

4
5

2
5

Total Arg(d1 → d2; 1) 1
2 − 3

10
3
10

1
2

−12c′ (mod 5) 4 2 3 1
Arg1(d1 → d2; 2) 3

10 − 1
10

1
10 − 3

10

Arg2(d1 → d2; 2) − 3
10 − 1

10
1
10

3
10

Arg3(d1 → d2; 2) 3
5

1
5

4
5

2
5

Total Arg(d1 → d2; 2) − 2
5 0 0 2

5

Table 8.4: Table for Arg(d1 → d2; `); 2 - c, 3|c, 5 - c.

Combining Table 8.3 and Table 8.4 we finish the proof in the case 2 - c′, 3|c′ and 5 - c′.

8.1.3 2|c′, 3 - c′, and 5 - c′

These are the case for c′ ≡ 2, 4, 8, 14, 16, 22, 26, 28 (mod 30). For Arg1(d1 → d4; `) we still use (8.13):

sgn
(
sin(πa4`5 )/ sin(πa1`5 )

)
= −1 whenever

{
` = 1

3βc′ ≡ 8 (mod 10)
or ` = 2.

By (8.9), θ = 1 and we still have

− (12cs(d4, c)− 12cs(d1, c)) ≡ −(d4 + a4 − d1 − a1) ≡ −6βc′ ≡ −βc′ (mod c), (8.26)

and 12cs(d, c) ≡ 0 (mod 6). Define the integer λ ≥ 1 by 2λ‖c. To determine the value modulo 24c, we need

to determine it modulo 8× 2λ. By (8.11) we have

12cs(d4, c)− 12cs(d1, c) ≡ d4 − d1 + (c2 + 3c+ 1)(d4{8×2λ} − d1{8×2λ})

+ 2c
(
d4{8×2λ}(

c
d4

)− d1{8×2λ}(
c
d1

)
)

(mod 8× 2λ)

≡ 3βc′
(
1− (c2 + 3c+ 1)d4{8×2λ} · d1{8×2λ}

)
+ 2c

(
d4{8×2λ}(

c
d4

)− d1{8×2λ}(
c
d1

)
)

(mod 8× 2λ).

(8.27)

We claim that

12cs(d4, c)− 12cs(d1, c) ≡ 0 (mod 8× 2λ). (8.28)
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To do this, since 2λ‖c′, x{8} ≡ x (mod 8) for odd x, and c′|(12cs(d4, c)− 12cs(d1, c)) by (8.26), we divide c′

in (8.27) and obtain

60 (s(d4, c)− s(d1, c)) ≡ 3β
(
1− (c2 + 3c+ 1)d4d1

)
+ 2

(
d4( c

d4
)− d1( c

d1
)
)

≡ 3βc′ (3βd1 − 1) (c′ − 1) + 2
(
d4( c

d4
)− d1( c

d1
)
)

(mod 8).

Define val.:= 3βc′ (3βd1 − 1) (c′ − 1) (mod 8). Note that both d1 and c′ − 1 are odd. We have Table 8.5 for

val.:

c′ (mod 5) 1 2 3 4
β 1 3 2 4

3βc′ 3c′ 6c′ 9c′ 12c′

3βd1 − 1 (mod 2) 3d1 − 1 6d1 − 1 9d1 − 1 12d1 − 1
2‖c, d1 ≡ 1 (mod 4); 4 4 0 0
2‖c, d1 ≡ 3 (mod 4); 0 4 4 0

4|c; 0 0 0 0

Table 8.5: Table of val.:= 3βc′ (3βd1 − 1) (c′ − 1) (mod 8); 2|c, no requirement for (c, 3), 5 - c.

For the second term we only need to determine d4( c
d4

) − d1( c
d1

) (mod 4). When λ is even, we have

d4 ≡ d1 (mod 4) and ( 2λ

d4
) = ( 2λ

d1
) = 1; when λ ≥ 3 is odd, we have d4 ≡ d1 (mod 8) and ( 2

d4
) = ( 2

d1
) = 1. By

quadratic reciprocity,

d4( c
d4

)− d1( c
d1

) ≡ d1

(
( 5
d4

)
(
c′/2λ

d4

)
− ( 5

d4
)
(
c′/2λ

d1

))
≡ d1

(
d1

c′/2λ

)(
(−1)(d4−1)( c

′
2λ
−1)/4 − (−1)(d1−1)( c

′
2λ
−1)/4

)
≡ 0 (mod 4)

where the last equality is because d4−1
2 and d1−1

2 are of the same parity. This matches the last row (case 4|c)
in Table 8.5.

When 2‖c, recall d4 = d1 + 3βc′ and we have

d4( c
d4

)− d1( c
d1

) ≡ ( d1
c′/2 )

(
( 2
d4

)(−1)(d4−1)( c
′
2 −1)/4d4 − ( 2

d1
)(−1)(d1−1)( c

′
2 −1)/4d1

)
(mod 4) (8.29)

When c′ ≡ 2 (mod 8), c′/2−1
2 is even and (8.29) gets to ( 2

d4
)d4 − ( 2

d1
)d1 (mod 4); When c′ ≡ 6 (mod 8),

c′/2−1
2 is odd and (8.29) gets to ( 2

d4
)(−1)

d4−1
2 d4 − ( 2

d1
)(−1)

d1−1
2 d1 (mod 4). Since c = 5c′ ≡ c′ (mod 8), we

can use d4 = d1 + 3βc′ to determine d4 (mod 8) and get Table 8.6.

(8.29) ↘ c′ ≡ 2 (mod 8) c′ ≡ 6 (mod 8)
d1 (mod 8) 1 3 5 7 1 3 5 7
β = 1, (8.29) 2 0 2 0 2 0 2 0
β = 2, (8.29) 2 2 2 2 2 2 2 2
β = 3, (8.29) 0 2 0 2 0 2 0 2
β = 4, (8.29) 0 0 0 0 0 0 0 0

Table 8.6: Table for (8.29); 2|c, no requirement for (c, 3), 5 - c.

Comparing Table 8.5 and Table 8.6 proves (8.28). Recall (8.8) and (8.26), we divide both the denominator

and numerator in P2 by 24c′ and get Arg2(d1 → d4; `) = e(β5 ). Since Arg3(d1 → d4; `) = e( 2β
5 ), we have
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Table 8.7.

c′ (mod 30) 2 4 8 14 16 22 26 28
β 3 4 2 4 1 3 1 2

3βc′ (mod 10) 8 8 8 8 8 8 8 8
−9βc′2 (mod 10) 2 4 8 4 6 2 6 8
Arg1(d1 → d4; 1) − 3

10 − 1
10

3
10 − 1

10
1
10 − 3

10
1
10

3
10

(Arg2 + Arg3)(d1 → d4; 1): 3β
5

4
5

2
5

1
5

2
5

3
5

4
5

3
5

1
5

Total Arg(d1 → d4; 1) 1
2

3
10

1
2

3
10 − 3

10
1
2 − 3

10
1
2

−18βc′2 ≡ 2c′ (mod 5) 4 3 1 3 2 4 2 1
Arg1(d1 → d4; 2) 3

10
1
10 − 3

10
1
10 − 1

10
3
10 − 1

10 − 3
10

(Arg2 + Arg3)(d1 → d4; 2): 3β
5

4
5

2
5

1
5

2
5

3
5

4
5

3
5

1
5

Total Arg(d1 → d4; 2) 1
10

1
2 − 1

10
1
2

1
2

1
10

1
2 − 1

10

Table 8.7: Table for Arg(d1 → d4; 2); 2|c, 3 - c, 5 - c.

Next we deal with Arg(d1 → d2; `). For Arg1(d1 → d2; `), we still use (8.16):

sgn
(
sin(πa35 )/ sin(πa15 )

)
= 1 and sgn

(
sin( 2πa3

5 )/ sin( 2πa1
5 )
)

= −1

By (8.9),

− (12cs(d2, c)− 12cs(d1, c)) ≡ −(d2 + a3 − d1 − a1) ≡ −3βc′ ≡ 2βc′ (mod c). (8.30)

This congruence shows that 12cs(d2, c)− 12cs(d1, c) is divisible by c′. Denote λ by 2λ‖c. We claim that

− (12cs(d2, c)− 12cs(d1, c)) ≡ 4× 2λ (mod 8× 2λ). (8.31)

To prove (8.31), we apply (8.11) to get

12cs(d2, c)− 12cs(d1, c) ≡ βc′
(
1− (c2 + 3c+ 1)d4{8×2λ} · d1{8×2λ}

)
+ 2c

(
d2{8×2λ}(

c
d2

)− d1{8×2λ}(
c
d1

)
)

(mod 8× 2λ).
(8.32)

Then similar as (8.27),

60s(d2, c)− 60s(d1, c) ≡ βc′(βd1 − 1)(c′ − 1) + 2
(
d2( c

d2
)− d1( c

d1
)
)

(mod 8). (8.33)

See Table 8.8 for the first part val.:= βc′ (βd1 − 1) (c′ − 1) and note that d1 is odd and c′ − 1 is odd:

c′ (mod 5) 1 2 3 4
β 1 3 2 4
βc′ c′ 3c′ 2c′ 4c′

βd1 − 1 d1 − 1 3d1 − 1 2d1 − 1 4d1 − 1
2‖c, d1 ≡ 1 (mod 4); val. (mod 8): 0 4 4 0
2‖c, d1 ≡ 3 (mod 4); val. (mod 8): 4 0 4 0

4|c; val. (mod 8): 0 0 0 0

Table 8.8: Table for val.:= βc′ (βd1 − 1) (c′ − 1) (mod 8); 2|c, no requirement for (c, 3), 5 - c.

For the second part 2
(
d2( c

d2
)− d1( c

d1
)
)

(mod 8), we do a similar process as Table 8.6 by quadratic
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reciprocity and skip this step. Combining (8.8), (8.30) and (8.31), we have

−(12cs(d2, c)− 12cs(d1, c)) ≡ 12× 2λ (mod 24× 2λ).

By dividing c′, −60s(d2, c) + 60s(d1, c) (mod 120) is uniquely determined by 2β (mod 5) and 12 (mod 24).

Hence

Arg2(d1 → d2; `) =
1, 7, 3, 9

10
, for β = 1, 2, 3, 4, respectively

and we get Table 8.9.

c′ (mod 30) 2 4 8 14 16 22 26 28
β 3 4 2 4 1 3 1 2

2βc′ (mod 10) 2 2 2 2 2 2 2 2
−3βc′2 ≡ 2c′ (mod 5) 4 3 1 3 2 4 2 1

Arg1(d1 → d2; 1) 4
5

3
5

1
5

3
5

2
5

4
5

2
5

1
5

Arg2(d1 → d2; 1) 3
10 − 1

10 − 3
10 − 1

10
1
10

3
10

1
10 − 3

10

Arg3(d1 → d2; 1) 2
5

1
5

3
5

1
5

4
5

2
5

4
5

3
5

Total Arg(d1 → d2; 1) 1
2 − 3

10
1
2 − 3

10
3
10

1
2

3
10

1
2

−12βc′2 ≡ 3c′ (mod 5) 1 2 4 2 3 1 3 4
Arg1(d1 → d2; 2) − 3

10 − 1
10

3
10 − 1

10
1
10 − 3

10
1
10

3
10

Arg2(d1 → d2; 2) 3
10 − 1

10 − 3
10 − 1

10
1
10

3
10

1
10 − 3

10

Arg3(d1 → d2; 2) 2
5

1
5

3
5

1
5

4
5

2
5

4
5

3
5

Total Arg(d1 → d2; 2) 2
5 0 − 2

5 0 0 2
5 0 − 2

5

Table 8.9: Table for Arg(d1 → d2; `); 2|c, 3 - c, 5 - c.

Comparing Table 8.7 and Table 8.9, we confirm that Condition 8.1 is satisfied in these cases.

8.1.4 2|c′, 3|c′, and 5 - c′

These are the cases c′ ≡ 6, 12, 18, 24 (mod 30). For Arg1(d1 → d4; `) we use (8.13):

sgn
(
sin(πa4`5 )/ sin(πa1`5 )

)
= −1 whenever

{
` = 1

3βc′ ≡ 8 (mod 10)
or ` = 2.

For Arg2(d1 → d4; `), by (8.9) we have

− (12cs(d4, c)− 12cs(d1, c)) ≡ −3βc′(1− d4{3c} · d1{3c}) (mod 3c). (8.34)

The proof of (8.28) in the former subsection still works for 3|c. Then −(12cs(d4, c)− 12cs(d1, c)) is a multiple

of 24c′. After dividing both the denominator and numerator in P2 and recalling dj{3c} ≡ aj ≡ j (mod 5) for

j = 1, 4, we get Arg2(d1 → d4; `) = e(β5 ). Now we have Table 8.10.

Then we check Arg(d1 → d2; `). For Arg1(d1 → d2; `), we use (8.16):

sgn
(
sin(πa35 )/ sin(πa15 )

)
= 1 and sgn

(
sin( 2πa3

5 )/ sin( 2πa1
5 )
)

= −1.
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c′ (mod 30) 6 12 18 24
β 1 3 2 4

3βc′ (mod 10) 8 8 8 8
−9βc′2 (mod 10) 6 2 8 4
Arg1(d1 → d4; 1) 1

10 − 3
10

3
10 − 1

10

(Arg2 + Arg3)(d1 → d4; 1) : 3β
5

3
5

4
5

1
5

2
5

Total Arg(d1 → d4; 1) − 3
10

1
2

1
2

3
10

−18βc′2 ≡ 2c′ (mod 5) 2 4 1 3
Arg1(d1 → d4; 2) − 1

10
3
10 − 3

10
1
10

(Arg2 + Arg3)(d1 → d4; 2) : 3β
5

3
5

4
5

1
5

2
5

Total Arg(d1 → d4; 2) 1
2

1
10 − 1

10
1
2

Table 8.10: Table for Arg(d1 → d4; `); 2|c, 3|c, 5 - c.

For Arg2(d1 → d2; `), by (8.9) we have

− (12cs(d2, c)− 12cs(d1, c)) ≡ −βc′(1− d2{3c}d1{3c}) (mod 3c). (8.35)

Since 3|c, d2{3c} ≡ a3 (mod 15) and d1{3c} ≡ a1 (mod 15). After dividing by c′ we have

−(60s(d2, c)− 60s(d1, c)) ≡ −β(1− a3a1) (mod 15).

Combining a3 = a1 + 2βc′ and a3a1 ≡ 3 (mod 5) we get a3a1 ≡ 13 (mod 15) and

− (60s(d2, c)− 60s(d1, c)) ≡ −3β (mod 15). (8.36)

Denote λ by 2λ‖c, then (8.31) still works as

− (60s(d2, c)− 60s(d1, c)) ≡ 4 (mod 8). (8.37)

By(8.36) and (8.37),

Arg2(d1 → d2; `) =
1, 7, 3, 9

10
for β = 1, 2, 3, 4, respectively.

This gives Table 8.11.

Comparing Table 8.10 and Table 8.11, we have proved that Condition 8.1 is satisfied in these cases.

8.1.5 5|c′

The case when 25|c and is different from the former cases. We still denote c′ = c/5 and V (r, c) := {d (mod c)∗ :

d ≡ r (mod c′)} for r (mod c′)∗. Now |V (r, c)| = 5 and since (d + c′, c) = 1 when (d, c) = 1, we can write

V (r, c) = {d, d+ c′, d+ 2c′, d+ 3c′, d+ 4c′} for 1 ≤ d < c′ and d ≡ r (mod c′).

We claim that (8.1) is still true:

∑
d∈V (r,c)

e
(
− 3c′a`2

10

)
sin(πa`p )

e

(
−12cs(d, c)

24c

)
e

(
4d

c

)
= 0, (8.38)
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c′ (mod 30) 6 12 18 24
β 1 3 2 4

−3βc′2 ≡ 2c′ (mod 5) 2 4 1 3
Arg1(d1 → d2; 1) 2

5
4
5

1
5

3
5

Arg2(d1 → d2; 1) 1
10

3
10 − 3

10 − 1
10

Arg3(d1 → d2; 1) 4
5

2
5

3
5

1
5

Total Arg(d1 → d2; 1) 3
10

1
2

1
2 − 3

10

−12βc′2 ≡ 3c′ (mod 5) 3 1 4 2
Arg1(d1 → d2; 2) 1

10 − 3
10

3
10 − 1

10

Arg2(d1 → d2; 2) 1
10

3
10 − 3

10 − 1
10

Arg3(d1 → d2; 2) 4
5

2
5

3
5

1
5

Total Arg(d1 → d2; 2) 0 2
5 − 2

5 0

Table 8.11: Table for Arg(d1 → d2; `); 2|c, 3|c, 5 - c.

but this time we have five summands. We prove (8.38) by showing that there are only two cases for the sum:

109

84

59
34

9

ℓ=1, points for V(9,125)

91

71

51
31

11

ℓ=2, points for V(11,100)

i.e. all at the outer circle (radius 1/ sin(π5 )) or all at the inner circle (radius 1/ sin( 2π
5 )) and equally distributed.

As before, we still denote P1, P2 and P3 for each term in (8.38) and investigate the argument differences

contributed from each term. Note that P1(d) = (−1)ca`/sin(πa`5 ) has period c′, hence Arg1(d→ d1; `) = 0

always.

For any d ∈ V (r, c), we take a (mod c) such that ad ≡ 1 (mod c). We denote d∗ = d + c′ and a∗ by

a∗d∗ ≡ 1 (mod c). Then can pick a∗ = a−c′ when d ≡ 1, 4 (mod 5) and pick a∗ = a+c′ when d ≡ 2, 3 (mod 5).

In the following two cases, we prove Arg(d → d∗; 1) is constant and independent from the choice of

d ∈ V (r, c). The other case ` = 2 only affects P1 (radii for those five points) and we still get (8.38).

8.1.5.1 c is odd

When d ≡ 1, 4 (mod 5) and 3 - c, (8.8), (8.9) and (8.10) imply that

12cs(d∗, c)− 12cs(d, c) ≡ 0 (mod 24c), (8.39)

hence Arg2(d→ d∗; `) = 0 always. As Arg3(d→ d∗; `) = 4
5 for any d ∈ V (r, c), we have proved (8.38) in this

case.
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When 3|c and d ≡ 1, 4 (mod 5), (8.9) implies

− (12cs(d∗, c)− 12cs(d, c)) ≡ −c′(1− d∗{3c} · d{3c}) (mod 3c). (8.40)

Since 15|c, after dividing by c′ we have

− (60s(d∗, c)− 60s(d, c)) ≡ a2 − 1 (mod 15). (8.41)

Note that a ≡ 1, 4 (mod 5) and a2 ≡ 1 (mod 15), hence we have −(12cs(d∗, c)− 12cs(d, c)) ≡ 0 (mod 24c)

and the same conclusion as the former case.

When d ≡ 2, 3 (mod 5) and 3 - c, recall d∗ = d + c′ and a1 = a + c′ with a + d ≡ 0 (mod 5). By (8.8),

(8.9) and (8.10), we have

−(12cs(d∗, c)− 12cs(d, c)) ≡ −2c′ (mod c) and ≡ 0 (mod 24).

Then Arg2(d→ d∗; `) = 2
5 . Since Arg3(d→ d∗; `) = 4

5 , we have proved this case.

When d ≡ 2, 3 (mod 5) and 3|c, we still get (8.41), while this time a ≡ 3, 2 (mod 5), a2 − 1 ≡ 3 (mod 15),

and hence a2 − 1 ≡ 48 (mod 120). We have Arg2(d→ d∗; `) = 2
5 . Since Arg3(d→ d∗; `) = 4

5 , we have proved

this case.

8.1.5.2 c is even

In this case, denote λ by 2λ‖c. Then by (8.11) we have

12cs(d∗, c)− 12cs(d, c) ≡ c′
(
1− (c2 + 3c+ 1)d1{8×2λ} · d{8×2λ}

)
+ 2c

(
( c
d∗

)d1{8×2λ} − ( cd )d{8×2λ}

)
(mod 8× 2λ).

Since c′|(12cs(d∗, c)− 12cs(d, c)) by (8.39) and (8.40), dividing the above congruence by c′ we have

− 60(s(d∗, c)− s(d, c)) ≡ −c′(d− 1)(c′ − 1)− 2
(

( c
d∗

)d∗ − ( cd )d
)

(mod 8). (8.42)

For the first term,

− c′(d− 1)(c′ − 1) ≡


0 (mod 8) if 2‖c, d ≡ 1 (mod 4);

4 (mod 8) if 2‖c, d ≡ 3 (mod 4);

0 (mod 8) if 4|c.
(8.43)

When λ is even, ( 2λ

d∗
) = ( 2λ

d ) = 1; when λ ≥ 3 is odd, ( 2
d∗

) = ( 2
d ). In either case d∗−1

2 and d−1
2 have the same

parity. Hence when 4|c, we have

( c
d∗

)d∗ − ( cd )d ≡ 0 (mod 4).

When 2‖c, we have Table 8.12 for val.:= ( c
d∗

)d∗ − ( cd )d (mod 4) using quadratic reciprocity.

Combining (8.43) and Table 8.12, for 2λ‖c we get

12cs(d∗, c)− 12cs(d, c) ≡ 0 (mod 8× 2λ). (8.44)

The argument for the cases d ≡ 1, 4 (mod 5) or d ≡ 2, 3 (mod 5), or the cases 3 - c or 3|c, are the same as the

former case c odd and we hold the same conclusion.
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d (mod 8) 1 3 5 7
d∗ (mod 8) when c′ ≡ 2 (mod 8) 3 5 7 1

val. 0 2 0 2
d∗ (mod 8) when c′ ≡ 6 (mod 8) 7 1 3 5

val. 0 2 0 2

Table 8.12: Table for val.:= ( c
d∗

)d∗ − ( cd )d (mod 4); 2|c, no requirement for (3, c), 5|c.

This finishes the proof of claim (1) in Theorem 1.15.

8.2 Proof of Theorem 1.15, claim (2)

Recall Proposition 7.1:

S(`)
∞∞(0, 7n+ 5, c, µ7) = e(− 1

8 )
∑

d (mod c)∗

µ(c, d, [a`], 7)

sin(π[a`]
7 )

e−πis(d,c)e

(
(7n+ 5)d

c

)

where ad ≡ 1 (mod c). We only need to consider ` = 1, 2, 3 because A( `p ;n) = A(1− `
p ;n).

Let c = 7c′. For r (mod c′)∗, we still define

V (r, c) = {d (mod c)∗ : d ≡ r (mod c′)}.

For example, V (1, 42) = {1, 13, 19, 25, 31, 37} and V (4, 35) = {4, 9, 19, 24, 29, 34}. It is not hard to show that

|V (r, c)| = 6 if 7 - c′, |V (r, c)| = 7 if 49|c, and (Z/cZ)∗ is the disjoint union

(Z/cZ)∗ =
⋃

r (mod c′)∗

V (r, c), where V (r1, c) ∩ V (r2, c) = ∅ for r1 6≡ r2 (mod c′).

As in (7.23), we have

µ(c, d, [a`], 7)

sin(π[a`]
7 )

=
(−1)`c

sin(πa`7 )
exp

(
−3πic′a`2

7

)
.

We claim that for ` = 1, 2, 3, the sum on V (r, c) for all r (mod c′)∗ is zero:

∑
d∈V (r,c)

e
(
− 3c′a`2

14

)
sin(πa`7 )

e

(
−12cs(d, c)

24c

)
e

(
5d

c

)
= 0 (8.45)

If this is true, then

∑
d∈V (r,c)

µ(c, d, [a`], 7)

sin(π[a`]
7 )

e−πis(d,c)e

(
(7n+ 5)d

c

)
= e

(nr
c′

)
(−1)`c · 0 = 0

for all n ∈ Z, ` = 1, 2, 3 and we have proved claim (2) of Theorem 1.15.

We define each term in (8.45) as

P (d) :=
e
(
− 3c′a`2

14

)
sin(πa`7 )

· e
(
−12cs(d, c)

24c

)
· e
(

5d

c

)
=: P (d1) · P (d2) · P (d3).
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First, we deal with the case 7 - c′. We still denote as (8.5) for the argument differences, but in this case

u, v ∈ {1, 2, · · · , 6} and ` ∈ {1, 2, 3}, where

du ≡ au ≡ u (mod 7), au{7}du ≡ 1 (mod c), du+1 = du + βc′ and au+1 = au + βc′. (8.46)

Note that the second congruence is not for audu but due to u{7} · u ≡ 1 (mod 7). Let 1 ≤ β ≤ 6 such that

βc′ ≡ 1 (mod 7).

As in Condition 8.1, we have the following styles for the six summands followed by the explanation in

Condition 8.3:

• ` = 1, 2, 3, first style.

d6=13

d4=11

d2=9d5=5

d3=3

d1=1

ℓ=1, points for V(1,14)

d6=34

d1=29
d3=24

d5=19

d2=9

d4=4

ℓ=2, points for V(4,35)

d6=27
d2=23

d5=19 d1=15

d4=11

d3=3

ℓ=3, points for V(3,28)

• ` = 1, 2, 3, reversed style from the above.

d6=20

d3=17

d4=11

d1=8

d5=5

d2=2

ℓ=1, points for V(2,21)

d6=41
d5=33

d4=25

d3=17

d2=9

d1=1

ℓ=2, points for V(1,56)

d6=41 d1=29

d2=23

d3=17

d4=11

d5=5

ℓ=3, points for V(5,42)

Here we explain these styles. Each graph above includes three circles centered at the origin with radii csc(π7 ),

csc( 2π
7 ) and csc( 3π

7 ), respectively. The six points in each graph above mark P (d) for d ∈ V (r, c) on these

three circles. It is not hard to prove that whenever the six points satisfy the following condition on their

argument differences, they sum to zero. This proves (8.45). One hint is the equation

cos( 3π
7 )

sin(π7 )
−

cos(π7 )

sin( 2π
7 )

+
cos( 2π

7 )

sin( 3π
7 )

= 0, where
1

sin(π7 )
,

1

sin( 2π
7 )
,

1

sin( 3π
7 )

are the radii.
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Condition 8.3. We have the following six styles for these six points.

• ` = 1: the arguments (as a proportion of 2π) going d1 → d2 → d3 → d4 → d5 → d6 → d1 are − 5
14 , − 2

7 ,

− 1
7 , − 2

7 , − 5
14 , and 3

7 , respectively, or the reversed style.

d1 → d2 → d3 → d4 → d5 → d6 → d1

c′ ≡ 2, 4 (mod 7) − 5
14 − 2

7 − 1
7 − 2

7 − 5
14

3
7

c′ ≡ 3, 5 (mod 7) 5
14

2
7

1
7

2
7

5
14 − 3

7

• ` = 2, second graph style:

d1 → d2 → d3 → d4 → d5 → d6 → d1

c′ ≡ 5, 6 (mod 7) 3
14

1
14

2
7

1
14

3
14

1
7

c′ ≡ 1, 2 (mod 7) − 3
14 − 1

14 − 2
7 − 1

14 − 3
14 − 1

7

• ` = 3, third graph style:

d1 → d2 → d3 → d4 → d5 → d6 → d1

c′ ≡ 1, 4 (mod 7) − 3
7

5
14

3
7

5
14 − 3

7 − 2
7

c′ ≡ 3, 6 (mod 7) 3
7 − 5

14 − 3
7 − 5

14
3
7

2
7

Remark. Note that claim (2) of Theorem 1.15 is for the case c′` 6≡ ±1 (mod 7), so Condition 8.3 does not

include all the cases of c′ (mod 7). We will highlight these exceptional cases among the tables in this section

by a row “c′` ≡ ±1 (mod 7)?”. The corresponding entry is:
blank, if c′` 6≡ ±1 (mod 7);

“ + ”, if c′` ≡ 1 (mod 7);

“− ”, if c′` ≡ −1 (mod 7).

We will explain these exceptional styles c′` ≡ ±1 (mod 7) in the next section for claim (3).

In the following subsections, we show Arg(d1 → d2; `), Arg(d2 → d3; `), and Arg(d3 → d4; `) in all the

cases c′ (mod 42). These argument differences are sufficient to check Condition 8.3 because

Arg(d1 → d2; `) = Arg(d5 → d6; `) and Arg(d2 → d3; `) = Arg(d4 → d5; `),

where the proof is the same as the proof of Lemma 8.2.

8.2.1 2 - c′, 3 - c′, 7 - c′

We begin by dealing with Arg(d1 → d2; `):

Arg1(d1 → d2; `) = −9βc′2`2

14

{
+0 sgn(sin(πa4`7 )/ sin(πa1`7 )) = 1,

± 1
2 sgn(sin(πa4`7 )/ sin(πa1`7 )) = −1.

When ` = 1, the sign changes when 3βc′ ≡ 10 (mod 14). When ` = 2, the sign always changes. When ` = 3,

the sign changes when 9βc′ ≡ 9 (mod 14) but does not change when 9βc′ ≡ 2 (mod 14).
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Since 12cs(d, c) ≡ 0 (mod 6), we have

−12cs(d2, c) + 12cs(d1, c) ≡ −d2 − a4 + d1 + a1 ≡ −4βc′ (mod c),

−12cs(d2, c) + 12cs(d1, c) ≡ 2(d27 )(d2c′ )− 2(d17 )(d1c′ ) ≡ 0 (mod 8),

from which

Arg2(d1 → d2; `) =
24{7} · 4β

7
=
β

7

(recall that Argj(du → dv; `) = x means Argj(du → dv; `) − x ∈ Z). Moreover, Arg3(d1 → d2; `) = 5β
7 .

This gives Table 8.13. Note that there are 12 choices of c′ so we break the table into upper (for c′ ≡
1, 5, 11, 13, 17, 19 (mod 7)) and lower (for c′ ≡ 23, 25, 29, 31, 37, 41 (mod 7)) parts.

Next we consider Arg(d2 → d3; `), with d2a4 ≡ d3a5 ≡ 1 (mod 7):

Arg1(d2 → d3; `) = −3βc′2`2

14

{
+0 if sgn(sin(πa5`7 )/ sin(πa4`7 )) = 1,

± 1
2 if sgn(sin(πa5`7 )/ sin(πa4`7 )) = −1.

Note that when ` = 1, the sign changes when βc′ ≡ 8 (mod 14). When ` = 2, the sign remains the same. when

` = 3, the sign changes when 3βc′ ≡ 3 (mod 14) but remains when 10 (mod 14) because a4` ≡ 5 (mod 7).

Since 12cs(d, c) ≡ 0 (mod 6), we have

−12cs(d3, c) + 12cs(d2, c) ≡ −d3 − a5 + d2 + a4 ≡ −2βc′ (mod c),

−12cs(d3, c) + 12cs(d2, c) ≡ 2(d37 )(d3c′ )− 2(d27 )(d2c′ ) ≡ 4 (mod 8),

and −84s(d3, c) + 84s(d2, c) (mod 168) is uniquely determined by 12 (mod 24) and −2β (mod 7). So

Arg2(d2 → d3; `) =
1, 3, 5, 9, 11, 13

14
when β = 1, 3, 5, 2, 4, 6, resp.

Moreover, Arg3(d2 → d3; `) = 5β
7 . This gives Table 8.14, which is broken into upper (for c′ ≡ 1, 5, 11, 13, 17, 19 (mod 7))

and lower (for c′ ≡ 23, 25, 29, 31, 37, 41 (mod 7)) parts.

Then we investigate Arg(d3 → d4; `) with d3a5 ≡ d4a2 ≡ 1 (mod 7). First we have

Arg1(d3 → d4; `) =
9βc′2`2

14

{
+0 if sgn(sin(πa2`7 )/ sin(πa5`7 )) = 1,

± 1
2 if sgn(sin(πa2`7 )/ sin(πa5`7 )) = −1.

When ` = 1, the sign changes if 3βc′ ≡ 10 (mod 14). When ` = 2, the sign always changes. When ` = 3, the

sign changes if 9βc′ ≡ 2 (mod 14) but remains if 9βc′ ≡ 9 (mod 14).

We have 12cs(d, c) ≡ 0 (mod 6),

−12cs(d4, c) + 12cs(d3, c) ≡ 2βc′ (mod c),

and

−12cs(d4, c) + 12cs(d3, c) ≡ 2(d47 )(d4c′ )− 2(d37 )(d3c′ ) ≡ 4 (mod 8).
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c′ (mod 42) 1 5 11 13 17 19
β 1 3 2 6 5 3

3βc′ (mod 14) 3 3 10 10 3 3
−9βc′2 (mod 14) 5 11 6 2 1 11
Arg1(d1 → d2; 1) 5

14
11
14

6
14 + 1

2
2
14 + 1

2
1
14

11
14

(Arg2 + Arg3)(d1 → d2; 1) − 1
7 − 3

7 − 2
7

1
7

2
7 − 3

7

Total Arg(d1 → d2; 1) 3
14

5
14 − 5

14 − 3
14

5
14

5
14

c′` ≡ ±1 (mod 7)? + −
−18βc′2 ≡ 3c′ (mod 7) 3 1 5 4 2 1

Arg1(d1 → d2; 2) : 1
2 + 3c′

7 − 1
14 − 5

14
3
14

1
14 − 3

14 − 5
14

(Arg2 + Arg3)(d1 → d2; 2) − 1
7 − 3

7 − 2
7

1
7

2
7 − 3

7

Total Arg(d1 → d2; 2) − 3
14

3
14 − 1

14
3
14

1
14

3
14

c′` ≡ ±1 (mod 7)? + −
9βc′ (mod 14) 9 9 2 2 9 9
−81βc′2 (mod 14) 3 1 12 4 9 1
Arg1(d1 → d2; 3) − 2

7 − 3
7 − 1

7
2
7

1
7 − 3

7

(Arg2 + Arg3)(d1 → d2; 3) − 1
7 − 3

7 − 2
7

1
7

2
7 − 3

7

Total Arg(d1 → d2; 3) − 3
7

1
7 − 3

7
3
7

3
7

1
7

c′` ≡ ±1 (mod 7)? + +

c′ (mod 42) 23 25 29 31 37 41
β 4 2 1 5 4 6

3βc′ (mod 14) 10 10 3 3 10 10
−9βc′2 (mod 14) 10 6 5 1 10 2
Arg1(d1 → d2; 1) 3

14 − 1
14

5
14

1
14

3
14 − 5

14

(Arg2 + Arg3)(d1 → d2; 1) 3
7 − 2

7 − 1
7

2
7

3
7

1
7

Total Arg(d1 → d2; 1) − 5
14 − 5

14
3
14

5
14 − 5

14 − 3
14

c′` = ±1 (mod 7)? + −
−18βc′2 ≡ 3c′ (mod 7) 6 5 3 2 8 4

Arg1(d1 → d2; 2) : 1
2 + 3c′

7
5
14

3
14 − 1

14 − 3
14

5
14

1
14

(Arg2 + Arg3)(d1 → d2; 1) 3
7 − 2

7 − 1
7

2
7

3
7

1
7

Total Arg(d1 → d2; 2) − 3
14 − 1

14 − 3
14

1
14 − 3

14
3
14

c′` ≡ ±1 (mod 7)? + −
9βc′ (mod 14) 2 2 9 9 2 2
−81βc′2 (mod 14) 6 12 3 9 6 4
Arg1(d1 → d2; 3) 3

7 − 1
7 − 2

7
1
7

3
7

2
7

(Arg2 + Arg3)(d1 → d2; 1) 3
7 − 2

7 − 1
7

2
7

3
7

1
7

Total Arg(d1 → d2; 3) − 1
7 − 3

7 − 3
7

3
7 − 1

7
3
7

c′` ≡ ±1 (mod 7)? − −

Table 8.13: Table for Arg(d1 → d2; `) in (8.45); 2 - c, 3 - c, 7 - c.
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c′ (mod 42) 1 5 11 13 17 19
β 1 3 2 6 5 3

βc′ (mod 14) 1 1 8 8 1 1
−3βc′2 (mod 14) 11 13 2 10 5 13
Arg1(d2 → d3; 1) 11

14
13
14

2
14 + 1

2
10
14 + 1

2
5
14

13
14

(Arg2 + Arg3)(d2 → d3; 1) 11
14

5
14

1
14

3
14

13
14

5
14

Total Arg(d2 → d3; 1) − 3
7

2
7 − 2

7
3
7

2
7

2
7

c′` ≡ ±1 (mod 7)? + −
−6βc′2 ≡ c′ (mod 7) 1 5 4 6 3 5

Arg1(d2 → d3; 2) : c
′

7
1
7

5
7

4
7

6
7

3
7

5
7

(Arg2 + Arg3)(d2 → d3; 2) 11
14

5
14

1
14

3
14

13
14

5
14

Total Arg(d2 → d3; 2) − 1
14

1
14 − 5

14
1
14

5
14

1
14

c′` ≡ ±1 (mod 7)? + −
3βc′ (mod 14) 3 3 10 10 3 3
−27βc′2 (mod 14) 1 5 4 6 3 5
Arg1(d2 → d3; 3) − 3

7 − 1
7

2
7

3
7 − 2

7 − 1
7

(Arg2 + Arg3)(d2 → d3; 3) 11
14

5
14

1
14

3
14

13
14

5
14

Total Arg(d2 → d3; 3) 5
14

3
14

5
14 − 5

14 − 5
14

3
14

c′` ≡ ±1 (mod 7)? + +

c′ (mod 42) 23 25 29 31 37 41
β 4 2 1 5 4 6

βc′ (mod 14) 8 8 1 1 8 8
−3βc′2 (mod 14) 8 2 11 5 8 10
Arg1(d2 → d3; 1) 1

14 − 5
14

11
14

5
14

1
14

3
14

(Arg2 + Arg3)(d2 → d3; 1) 9
14

1
14

11
14

13
14

9
14

3
14

Total Arg(d1 → d2; 1) − 2
7 − 2

7 − 3
7

2
7 − 2

7
3
7

c′` ≡ ±1 (mod 7)? + −
−6βc′2 ≡ c′ (mod 7) 2 4 1 3 2 6

Arg1(d1 → d2; 2) : c
′

7
2
7

4
7

1
7

3
7

2
7

6
7

(Arg2 + Arg3)(d2 → d3; 2) 9
14

1
14

11
14

13
14

9
14

3
14

Total Arg(d1 → d2; 2) − 1
14 − 5

14 − 1
14

5
14 − 1

14
1
14

c′` ≡ ±1 (mod 7)? + −
3βc′ (mod 14) 10 10 3 3 10 10
−27βc′2 (mod 14) 2 4 1 3 2 6
Arg1(d2 → d3; 3) 1

7
2
7

4
7

5
7

1
7

3
7

(Arg2 + Arg3)(d2 → d3; 3) 9
14

1
14

11
14

13
14

9
14

3
14

Total Arg(d1 → d2; 3) − 3
14

5
14

5
14 − 5

14 − 3
14 − 5

14

c′` ≡ ±1 (mod 7)? − −

Table 8.14: Table for Arg(d2 → d3; `) in (8.45); 2 - c, 3 - c, 7 - c.
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So −84s(d4, c) + 84s(d3, c) (mod 168) is uniquely determined by 12 (mod 24) and 2β (mod 7) and

Arg2(d3 → d4; `) =
1, 3, 5, 9, 11, 13

14
when β = 6, 4, 2, 5, 3, 1, resp.

Moreover, Arg3(d3 → d4; `) = 5β
7 . This gives Table 8.15.

Now we have finished the proof for 2 - c′, 3 - c′ and 7 - c′ by comparing Table 8.13, Table 8.14, and

Table 8.15 with Condition 8.3.

8.2.2 2 - c′, 3|c′, 7 - c′

In this case c′ ≡ 3, 9, 15, 27, 33, 39 (mod 42). First we check Arg(d1 → d2; `) with d1a1 ≡ d2a4 ≡ 1 (mod 7):

Arg1(d1 → d2; `) = −9βc′2`2

14

{
+0 sgn(sin(πa4`7 )/ sin(πa1`7 )) = 1,

± 1
2 sgn(sin(πa4`7 )/ sin(πa1`7 )) = −1.

When ` = 1, the sign changes when 3βc′ ≡ 10 (mod 14). When ` = 2, the sign always changes. When ` = 3,

the sign changes when 9βc′ ≡ 9 (mod 14) but keeps when 9βc′ ≡ 2 (mod 14).

We have θ = 3, 6cs(d, c) ∈ Z, and

−12cs(d2, c) + 12cs(d1, c) ≡ −d2 − d2{3c} + d1 + d1{3c} ≡ −βc′ + βc′d1{3c} · d2{3c} (mod 3c).

Here d1{3c} is the inverse of d1 (mod 3c) and we have used (8.12). Hence we confirm that −12cs(d2, c) +

12cs(d1, c) is a multiple of c′. After dividing the above congruence by c′, we obtain a congruence modulo 21

while dj{3c} ≡ aj{7} (mod 21) due to 21|c. Hence

−84s(d2, c) + 84s(d1, c) ≡ −β + βa1a4 ≡ β(a1a4 − 1) (mod 21).

We have a1a4 ≡ 4 (mod 21) by a4a1 ≡ 1 (mod 3) and a1a4 ≡ 4 (mod 7). Hence

−28s(d2, c) + 28s(d1, c) ≡ β (mod 7).

Due to ( 2
7 ) = 1, we also have

−12cs(d1, c) + 12cs(d2, c) ≡ 2(d17 )(d1c′ )− 2(d27 )(d2c′ ) ≡ 0 (mod 8).

Since 3c′ is odd, we still have −28s(d2, c)+28s(d1, c) ≡ 0 (mod 8). Now we get Arg2(d1 → d2; `) =
8{21}·β

7 = β
7

and (Arg2 + Arg3)(d1 → d2; `) = −β
7 . This gives Table 8.16.

Next we investigate Arg(d2 → d3; `) with d2a4 ≡ d3a5 ≡ 1 (mod 7):

Arg1(d2 → d3; `) = −3βc′2`2

14

{
+0 sgn(sin(πa5`7 )/ sin(πa4`7 )) = 1,

± 1
2 sgn(sin(πa5`7 )/ sin(πa4`7 )) = −1.

When ` = 1, the sign changes when βc′ ≡ 8 (mod 14). When ` = 2, the sign remains. When ` = 3, the sign

changes when 3βc′ ≡ 3 (mod 14) but remains when 3βc′ ≡ 10 (mod 14).
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c′ (mod 42) 1 5 11 13 17 19
β 1 3 2 6 5 3

3βc′ (mod 14) 3 3 10 10 3 3
9βc′2 (mod 14) 9 3 8 12 13 3

Arg1(d3 → d4; 1) 9
14

3
14

8
14 + 1

2
12
14 + 1

2
13
14

3
14

(Arg2 + Arg3)(d3 → d4; 1) 9
14

13
14

11
14

5
14

3
14

13
14

Total Arg(d3 → d4; 1) 2
7

1
7 − 1

7 − 2
7

1
7

1
7

c′` ≡ ±1 (mod 7)? + −
18βc′2 ≡ 4c′ (mod 7) 4 6 2 3 5 6

Arg1(d3 → d4; 2) : 1
2 + 4c′

7
1
14

5
14 − 3

14 − 1
14

3
14

5
14

(Arg2 + Arg3)(d3 → d4; 2) 9
14

13
14

11
14

5
14

3
14

13
14

Total Arg(d3 → d4; 2) − 2
7

2
7 − 3

7
2
7

3
7

2
7

c′` ≡ ±1 (mod 7)? + −
9βc′ (mod 14) 9 9 2 2 9 9

81βc′2 (mod 14) 11 13 2 10 5 13
Arg1(d3 → d4; 3) 11

14
13
14 − 5

14
3
14

5
14

13
14

(Arg2 + Arg3)(d3 → d4; 3) 9
14

13
14

11
14

5
14

3
14

13
14

Total Arg(d3 → d4; 3) 3
7 − 1

7
3
7 − 3

7 − 3
7 − 1

7

c′` ≡ ±1 (mod 7)? + +

c′ (mod 42) 23 25 29 31 37 41
β 4 2 1 5 4 6

3βc′ (mod 14) 10 10 3 3 10 10
9βc′2 (mod 14) 4 8 9 13 4 12

Arg1(d3 → d4; 1) − 3
14

1
14 − 5

14 − 1
14 − 3

14
5
14

(Arg2 + Arg3)(d3 → d4; 1) 1
14

11
14

9
14

3
14

1
14

5
14

Total Arg(d3 → d4; 1) − 1
7 − 1

7
2
7

1
7 − 1

7 − 2
7

c′` ≡ ±1 (mod 7)? + −
18βc′2 ≡ 4c′ (mod 7) 1 2 4 5 1 3

Arg1(d3 → d4; 2) : 1
2 + 3c′

7 − 5
14 − 3

14
1
14

3
14 − 5

14 − 1
14

(Arg2 + Arg3)(d3 → d4; 2) 1
14

11
14

9
14

3
14

1
14

5
14

Total Arg(d3 → d4; 2) − 2
7 − 3

7 − 2
7

3
7 − 2

7
2
7

c′` ≡ ±1 (mod 7)? + −
9βc′ (mod 14) 2 2 9 9 2 2
−81βc′2 (mod 14) 8 2 11 5 8 10
Arg1(d3 → d4; 3) 1

14 − 5
14

11
14

5
14

1
14

3
14

(Arg2 + Arg3)(d3 → d4; 3) 1
14

11
14

9
14

3
14

1
14

5
14

Total Arg(d3 → d4; 3) 1
7

3
7

3
7 − 3

7
1
7 − 3

7

c′` ≡ ±1 (mod 7)? − −

Table 8.15: Table for Arg(d3 → d4; `) in (8.45); 2 - c, 3 - c, 7 - c.
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c′ (mod 42) 3 9 15 27 33 39
β 5 4 1 6 3 2

3βc′ (mod 14) 3 10 3 10 3 10
−9βc′2 (mod 14) 1 10 5 2 11 6
Arg1(d1 → d2; 1) 1

14
3
14

5
14 − 5

14
11
14 − 1

14

(Arg2 + Arg3)(d1 → d2; 1) − 5
7 − 4

7 − 1
7 − 6

7 − 3
7 − 2

7

Total Arg(d1 → d2; 1) 5
14 − 5

14
3
14 − 3

14
5
14 − 5

14

c′` ≡ ±1 (mod 7)? + −
−18βc′2 ≡ 3c′ (mod 7) 2 6 3 4 1 5

Arg1(d1 → d2; 2) : 1
2 + 3c′

7 − 3
14

5
14 − 1

14
1
14 − 5

14
3
14

(Arg2 + Arg3)(d1 → d2; 1) − 5
7 − 4

7 − 1
7 − 6

7 − 3
7 − 2

7

Total Arg(d1 → d2; 2) 1
14 − 3

14 − 3
14

3
14

3
14 − 1

14

c′` ≡ ±1 (mod 7)? − +

9βc′ (mod 14) 9 2 9 2 9 2
−81βc′2 (mod 14) 9 6 3 4 1 12
Arg1(d1 → d2; 3) 1

7
3
7 − 2

7
2
7 − 3

7 − 1
7

(Arg2 + Arg3)(d1 → d2; 1) − 5
7 − 4

7 − 1
7 − 6

7 − 3
7 − 2

7

Total Arg(d1 → d2; 3) 3
7 − 1

7 − 3
7

3
7

1
7 − 3

7

c′` ≡ ±1 (mod 7)? − +

Table 8.16: Table for Arg(d1 → d2; `) in (8.45); 2 - c, 3|c, 7 - c.

We have θ = 3, 6cs(d, c) ∈ Z, and

−12cs(d3, c) + 12cs(d2, c) ≡ −d3 − d3{3c} + d2 + d2{3c} ≡ −βc′ + βc′d2{3c} · d3{3c} (mod 3c).

Hence we confirm that −12cs(d3, c) + 12cs(d2, c) is a multiple of c′. After dividing by c′, we obtain a

congruence modulo 21 and

−84s(d3, c) + 84s(d2, c) ≡ −β + βa4a5 ≡ β(a4a5 − 1) (mod 21).

Since a4a5 ≡ 13 (mod 21) by a4a5 ≡ 1 (mod 3) and a4a5 ≡ −1 (mod 7), we have

−28s(d3, c) + 28s(d2, c) ≡ 4β (mod 7).

By (8.11), we get

−12cs(d3, c) + 12cs(d2, c) ≡ 2(d27 )(d2c′ )− 2(d37 )(d3c′ ) ≡ 4 (mod 8).

Since 3c′ is odd, we still have −28s(d3, c)+28s(d2, c) ≡ 4 (mod 8). Now 4β (mod 7) and 4 (mod 8) determines

a unique residue modulo 56 and then

Arg2(d2 → d3; `) ≡ 1, 3, 5, 9, 11, 13

14
(mod 1) when β = 1, 3, 5, 2, 4, 6.

This gives Table 8.17.
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c′ (mod 42) 3 9 15 27 33 39
β 5 4 1 6 3 2

βc′ (mod 14) 1 8 1 8 1 8
−3βc′2 (mod 14) 5 8 11 10 13 2
Arg1(d2 → d3; 1) 5

14
1
14

11
14

3
14

13
14 − 5

14

(Arg2 + Arg3)(d2 → d3; 1) 13
14

9
14

11
14

3
14

5
14

1
14

Total Arg(d2 → d3; 1) 2
7 − 2

7 − 3
7

3
7

2
7 − 2

7

c′` ≡ ±1 (mod 7)? + −
−6βc′2 ≡ c′ (mod 7) 3 2 1 6 5 4

Arg1(d2 → d3; 2) : c
′

7
3
7

2
7

1
7

6
7

5
7

4
7

(Arg2 + Arg3)(d2 → d3; 1) 13
14

9
14

11
14

3
14

5
14

1
14

Total Arg(d2 → d3; 2) 5
14 − 1

14 − 1
14

1
14

1
14 − 5

14

c′` ≡ ±1 (mod 7)? − +

3βc′ (mod 14) 3 10 3 10 3 10
−27βc′2 (mod 14) 3 2 1 6 5 4
Arg1(d1 → d2; 3) − 2

7
1
7 − 3

7
3
7 − 1

7
2
7

(Arg2 + Arg3)(d2 → d3; 1) 13
14

9
14

11
14

3
14

5
14

1
14

Total Arg(d2 → d3; 3) − 5
14 − 3

14
5
14 − 5

14
3
14

5
14

c′` ≡ ±1 (mod 7)? − +

Table 8.17: Table for Arg(d1 → d2; `) in (8.45); 2 - c, 3|c, 7 - c.

Finally we deal with Arg(d3 → d4; `) where d3a5 ≡ d4a2 ≡ 1 (mod 7):

Arg1(d3 → d4; `) =
9βc′2`2

14

{
+0 sgn(sin(πa2`7 )/ sin(πa5`7 )) = 1,

± 1
2 sgn(sin(πa2`7 )/ sin(πa5`7 )) = −1.

When ` = 1, the sign changes when 3βc′ ≡ 10 (mod 14) but remains when 3βc′ ≡ 3 (mod 14). When

` = 2, the sign always changes. When ` = 3, the sign changes when 9βc′ ≡ 2 (mod 14) but remains when

9βc′ ≡ 9 (mod 14).

We have θ = 3, 6cs(d, c) ∈ Z, and

−12cs(d4, c) + 12cs(d3, c) ≡ −d4 − d4{3c} + d3 + d3{3c} ≡ −βc′ + βc′d3{3c} · d4{3c} (mod 3c).

We again confirm that −12cs(d4, c) + 12cs(d3, c) is a multiple of c′. After dividing the above congruence by

c′, we obtain a congruence modulo 21 and

−84s(d4, c) + 84s(d3, c) ≡ −β + βa5a2 ≡ β(a5a2 − 1) (mod 21).

Since a2a5 ≡ 10 (mod 21) bya5a2 ≡ 1 (mod 3) and a5a2 ≡ 3 (mod 7), we get

−28s(d4, c) + 28s(d3, c) ≡ 3β (mod 7).

We also have

−12cs(d4, c) + 12cs(d3, c) ≡ 2(d47 )(d4c′ )− 2(d37 )(d3c′ ) ≡ 4 (mod 8).
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Since 3c′ is odd, we get −28s(d4, c) + 28s(d3, c) ≡ 4 (mod 8). Now 3β (mod 7) and 4 (mod 8) determines a

unique residue modulo 56 and then

Arg2(d2 → d3; `) ≡ 1, 3, 5, 9, 11, 13

14
(mod 1) when β = 6, 4, 2, 5, 3, 1.

This gives Table 8.18 and we have finished the proof for c′ ≡ 3, 9, 15, 27, 33, 39 (mod 42).

c′ (mod 42) 3 9 15 27 33 39
β 5 4 1 6 3 2

3βc′ (mod 14) 3 10 3 10 3 10
9βc′2 (mod 14) 13 4 9 12 3 8

Arg1(d3 → d4; 1) 13
14 − 3

14
9
14

5
14

3
14

1
14

(Arg2 + Arg3)(d3 → d4; 1) 3
14

1
14

9
14

5
14

13
14

11
14

Total Arg(d1 → d2; 1) 1
7 − 1

7
2
7 − 2

7
1
7 − 1

7

c′` ≡ ±1 (mod 7)? + −
18βc′2 ≡ 4c′ (mod 7) 5 1 4 3 6 2

Arg1(d3 → d4; 2) : 1
2 + 4c′

7
3
14 − 5

14
1
14 − 1

14
5
14 − 3

14

(Arg2 + Arg3)(d3 → d4; 1) 3
14

1
14

9
14

5
14

13
14

11
14

Total Arg(d3 → d4; 2) 3
7 − 2

7 − 2
7

2
7

2
7 − 3

7

c′` ≡ ±1 (mod 7)? − +

9βc′ (mod 14) 9 2 9 2 9 2
81βc′2 (mod 14) 5 8 11 10 13 2
Arg1(d1 → d2; 3) 5

14
1
14

11
14

3
14

13
14 − 5

14

(Arg2 + Arg3)(d3 → d4; 1) 3
14

1
14

9
14

5
14

13
14

11
14

Total Arg(d1 → d2; 3) − 3
7

1
7

3
7 − 3

7 − 1
7

3
7

c′` ≡ ±1 (mod 7)? − +

Table 8.18: Table for Arg(d3 → d4; `) in (8.45); 2 - c, 3|c, 7 - c.

8.2.3 2|c′, 3 - c′, 7 - c′

In this case c′ ≡ 2, 4, 8, 10, 16, 20, 22, 26, 32, 34, 38, 40 (mod 42). First we deal with Arg(d1 → d2; `):

Arg1(d1 → d2; `) = −9βc′2`2

14

{
+0 sgn(sin(πa4`7 )/ sin(πa1`7 )) = 1,

± 1
2 sgn(sin(πa4`7 )/ sin(πa1`7 )) = −1.

Now c′ is even, so βc′ ≡ 8 (mod 14). When ` = 1, 2, the sign changes. When ` = 3, the sign remains.

For Arg2 we need to combine (8.9) and (8.11). We have 12cs(d, c) ≡ 0 (mod 6) and

− 12cs(d2, c) + 12cs(d1, c) ≡ −d2 − a4 + d1 + a1 ≡ −4βc′ (mod c). (8.47)

Then −12cs(d2, c) + 12cs(d1, c) is a multiple of c′.

We claim that

− 12cs(d2, c) + 12cs(d1, c) ≡ 0 (mod 8× 2λ). (8.48)
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Denote λ ≥ 1 by 2λ‖c. We have

−12cs(d2, c) + 12cs(d1, c) ≡− d2 − d2{8×2λ}(c
2 + 3c+ 1 + 2c( c

d2
))

+ d1 + d1{8×2λ}(c
2 + 3c+ 1 + 2c( c

d1
))

≡− βc′ + βc′d2{8×2λ} · d1{8×2λ}(c
2 + 3c+ 1)

+ 2c(d1{8×2λ}(
c
d1

)− d2{8×2λ}(
c
d2

)) (mod 8× 2λ).

After dividing c′, we get the value modulo 8 by x{8} ≡ x (mod 8):

−84s(d2, c) + 84s(d1, c) ≡ −β + βd2d1(c2 + 3c+ 1) + 6(d1( c
d1

)− d2( c
d2

))

≡ βc′(1 + d1β)(c′ + 1)− 2(d1( c
d1

)− d2( c
d2

)) (mod 8)

For the first value val.:= βc′(1 + d1β)(c′ + 1) (mod 8), we see that β(1 + d1β) is even (becuase d1 is odd)

and c′ is even, hence the result is 0, 4 (mod 8). Moreover, val. is the same for c′ and c′ + 7. Then we have

Table 8.19.

c′ (mod 7) 1 2 3 4 5 6
β 1 4 5 2 3 6
βc′ c′ 4c′ 5c′ 2c′ 3c′ 6c′

βd1 + 1 d1 + 1 4d1 + 1 5d1 + 1 2d1 + 1 3d1 + 1 6d1 + 1
2‖c, d1 ≡ 1 (mod 4) 4 0 4 4 0 4
2‖c, d1 ≡ 3 (mod 4) 0 0 0 4 4 4

4|c 0 0 0 0 0 0

Table 8.19: Table for val.:= βc′ (βd1 + 1) (c′ + 1) (mod 8); 2|c, no requirement for (c, 3), 7 - c.

For the other part we determine whether

d1( c
d1

)− d2( c
d2

) ≡ 0 or 2 (mod 4). (8.49)

When 2λ‖c and λ ≥ 2 is even, we have d1 ≡ d2 (mod 4) and ( 2λ

d ) = 1, hence (8.49) is 0 (mod 4). When λ ≥ 3

is odd, then d2 ≡ d1 (mod 8) and we still have ( 2λ

d1
) = ( 2λ

d2
). Then when 4|c, we get (8.49) always divisible by

4, which matches the last row of Table 8.19.

When 2‖c, by ( 7
x ) = (x7 )(−1)

x−1
2 for odd x, we have

d1( c
d1

)− d2( c
d2

) ≡ ( d1
c′/2 )

(
(−1)

d1−1
2 +

d1−1
2 ·

c′
2
−1

2 ( 2
d1

)d1 − (−1)
d2−1

2 +
d2−1

2 ·
c′
2
−1

2 ( 2
d2

)d2

)
(mod 4). (8.50)

Since d2 = d1 + βc′, we divide into cases for c′ ≡ 2, 6 (mod 8), d1 ≡ 1, 3, 5, 7 (mod 8) and β from 1 to 6 to

make Table 8.20. Note that d2 (mod 8) is derived by c′ (mod 8), β and d1 (mod 8).

Comparing Table 8.19 and Table 8.20, we have proved (8.48). Combining (8.47) and 12cs(d, c) ≡ 0 (mod 6),

we divide 24c′ to compute Arg2(d1 → d2; `) = β
7 . Then (Arg2 + Arg3)(d1 → d2; `) = −β7 and we have

Table 8.21.

Next we deal with Arg(d2 → d3; `) with d2a4 ≡ d3a5 ≡ 1 (mod 7):

Arg1(d2 → d3; `) = −3βc′2`2

14

{
+0 sgn(sin(πa5`7 )/ sin(πa4`7 )) = 1,

± 1
2 sgn(sin(πa5`7 )/ sin(πa4`7 )) = −1.
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(8.49) ↘ c′ ≡ 2 (mod 8) c′ ≡ 6 (mod 8)
d1 (mod 8) 1 3 5 7 1 3 5 7
β = 1, (8.49) 2 0 2 0 2 0 2 0
β = 4, (8.49) 0 0 0 0 0 0 0 0
β = 5, (8.49) 2 0 2 0 2 0 2 0
β = 2, (8.49) 2 2 2 2 2 2 2 2
β = 3, (8.49) 0 2 0 2 0 2 0 2
β = 6, (8.49) 2 2 2 2 2 2 2 2

Table 8.20: Table for (8.49); 2|c, no requirement for (c, 3), 7 - c.

Now c′ is even, so βc′ ≡ 8 (mod 14). When ` = 1, the sign changes. When ` = 2, 3, the sign remains.

For Arg2(d2 → d3; `) we do the similar proof as Arg2(d1 → d2; `). First we have

− 12cs(d3, c) + 12cs(d2, c) ≡ −d3 − a5 + d2 + a4 ≡ −2βc′ (mod c). (8.51)

Then −12cs(d3, c) + 12cs(d2, c) is a multiple of c′.

We claim that

− 12cs(d3, c) + 12cs(d2, c) ≡ 4× 2λ (mod 8× 2λ). (8.52)

For λ ≥ 1 such that 2λ‖c, we have

−12cs(d3, c) + 12cs(d2, c) ≡− d3 − d3{8×2λ}(c
2 + 3c+ 1 + 2c( c

d3
))

+ d2 + d2{8×2λ}(c
2 + 3c+ 1 + 2c( c

d2
))

≡− βc′ + βc′d3{8×2λ} · d2{8×2λ}(c
2 + 3c+ 1)

+ 2c(d2{8×2λ}(
c
d2

)− d3{8×2λ}(
c
d3

)) (mod 8× 2λ),

After dividing c′, since 2λ‖c′ and x{8} ≡ x (mod 8) for odd x, we have

−84s(d3, c) + 84s(d2, c) ≡ −β + βd3d2(c2 + 3c+ 1) + 6(d2( c
d2

)− d3( c
d3

))

≡ βc′(1 + d2β)(c′ + 1)− 2(d2( c
d2

)− d3( c
d3

)) (mod 8)

The proof of (8.52) is then the same as the proof of (8.48) before, noting that in the second part we have

(d27 ) = 1 while (d37 ) = −1. This difference makes an alternation in Table 8.20 where we should change all 2 to

0 and all 0 to 2, which results in 4 × 2λ (mod 8 × 2λ) rather than 0 (mod 8 × 2λ) in (8.52). We omit the

details.

Combining (8.51), (8.52) and 12cs(d, c) ≡ 0 (mod 6) we can determine Arg2(d2 → d3; `) with denominator

42 and numerator by 3β (mod 7) and 3 (mod 6), hence

Arg2(d2 → d3; `) =
1, 3, 5, 9, 11, 13

14
when β = 1, 3, 5, 2, 4, 6, resp.

Now we have Table 8.22.

Finally we check Arg(d2 → d3; `) with d3a5 ≡ d4a2 ≡ 1 (mod 7):

Arg1(d2 → d3; `) =
9βc′2`2

14

{
+0 sgn(sin(πa2`7 )/ sin(πa5`7 )) = 1,

± 1
2 sgn(sin(πa2`7 )/ sin(πa5`7 )) = −1.
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c′ (mod 42) 2 4 8 10 16 20
β 4 2 1 5 4 6

−3βc′2 (mod 14) 10 6 12 8 10 2

Arg1(d1 → d2; 1) : 1
2 −

9βc′2

14
3
14 − 1

14
5
14

1
14

3
14 − 5

14

(Arg2 + Arg3)(d1 → d2; 1) − 4
7 − 2

7 − 1
7 − 5

7 − 4
7 − 6

7

Total Arg(d1 → d2; 1) − 5
14 − 5

14
3
14

5
14 − 5

14 − 3
14

c′` ≡ ±1 (mod 7)? + −
−18βc′2 ≡ 3c′ (mod 7) 6 5 3 2 6 4

Arg1(d1 → d2; 2) : 1
2 + 3c′

7
5
14

3
14 − 1

14 − 3
14

5
14

1
14

(Arg2 + Arg3)(d1 → d2; 1) − 3
7 − 2

7 − 1
7 − 5

7 − 4
7 − 6

7

Total Arg(d1 → d2; 2) − 3
14 − 1

14 − 3
14

1
14 − 3

14
3
14

c′` ≡ ±1 (mod 7)? + −
−81βc′2 (mod 14) 6 12 10 2 6 4

Arg1(d1 → d2; 3) : − 81βc′2

14
3
7

6
7

5
7

1
7

3
7

2
7

(Arg2 + Arg3)(d1 → d2; 1) − 4
7 − 2

7 − 1
7 − 5

7 − 4
7 − 6

7

Total Arg(d1 → d2; 3) − 1
7 − 3

7 − 3
7

3
7 − 1

7
3
7

c′` ≡ ±1 (mod 7)? − −
c′ (mod 42) 22 26 32 34 38 40

β 1 3 2 6 5 3
−9βc′2 (mod 14) 12 4 6 2 8 4

Arg1(d1 → d2; 1) : 1
2 −

9βc′2

14
5
14 − 3

14 − 1
14 − 5

14
1
14 − 3

14

(Arg2 + Arg3)(d1 → d2; 1) − 1
7 − 3

7 − 2
7 − 6

7 − 5
7 − 3

7

Total Arg(d1 → d2; 1) 3
14

5
14 − 5

14 − 3
14

5
14

5
14

c′` = ±1 (mod 7)? + −
−18βc′2 ≡ 3c′ (mod 7) 3 1 5 4 2 1

Arg1(d1 → d2; 2) : 1
2 + 3c′

7 − 1
14 − 5

14
3
14

1
14 − 3

14 − 5
14

(Arg2 + Arg3)(d1 → d2; 1) − 1
7 − 3

7 − 2
7 − 6

7 − 5
7 − 3

7

Total Arg(d1 → d2; 2) − 3
14

3
14 − 1

14
3
14

1
14

3
14

c′` ≡ ±1 (mod 7)? + −
−81βc′2 (mod 14) 10 8 12 4 2 8

Arg1(d1 → d2; 3) : − 81βc′2

14
5
7

4
7

6
7

2
7

1
7

4
7

(Arg2 + Arg3)(d1 → d2; 1) − 1
7 − 3

7 − 2
7 − 6

7 − 5
7 − 3

7

Total Arg(d1 → d2; 3) − 3
7

1
7 − 3

7
3
7

3
7

1
7

c′` ≡ ±1 (mod 7)? + +

Table 8.21: Table for Arg(d1 → d2; `) in (8.45); 2|c, 3 - c, 7 - c.

148



c′ (mod 42) 2 4 8 10 16 20
β 4 2 1 5 4 6

−3βc′2 (mod 14) 8 2 4 12 8 10

Arg1(d2 → d3; 1) : 1
2 −

3βc′2

14
1
14 − 5

14 − 3
14

5
14

1
14

3
14

(Arg2 + Arg3)(d2 → d3; 1) 9
14

1
14

11
14

13
14

9
14

3
14

Total Arg(d2 → d3; 1) − 2
7 − 2

7 − 3
7

2
7 − 2

7
3
7

c′` ≡ ±1 (mod 7)? + −
−6βc′2 ≡ c′ (mod 7) 2 4 1 3 2 6

Arg1(d2 → d3; 2) : 3c′

7
2
7

4
7

1
7

3
7

2
7

6
7

(Arg2 + Arg3)(d2 → d3; 2) 9
14

1
14

11
14

13
14

9
14

3
14

Total Arg(d2 → d3; 2) − 1
14 − 5

14 − 1
14

5
14 − 1

14
1
14

c′` ≡ ±1 (mod 7)? + −
−27βc′2 (mod 14) 2 4 8 10 2 6

Arg1(d2 → d3; 3) : − 27βc′2

14
1
7

2
7

4
7

5
7

1
7

3
7

(Arg2 + Arg3)(d2 → d3; 3) 9
14

1
14

11
14

13
14

9
14

3
14

Total Arg(d2 → d3; 3) − 3
14

5
14

5
14 − 5

14 − 3
14 − 5

14

c′` ≡ ±1 (mod 7)? − −
c′ (mod 42) 22 26 32 34 38 40

β 1 3 2 6 5 3
−3βc′2 (mod 14) 4 6 2 10 12 6

Arg1(d2 → d3; 1) : 1
2 −

3βc′2

14 − 3
14 − 1

14 − 5
14

3
14

5
14 − 1

14

(Arg2 + Arg3)(d2 → d3; 1) 11
14

5
14

1
14

3
14

13
14

5
14

Total Arg(d2 → d3; 1) − 3
7

2
7 − 2

7
3
7

2
7

2
7

c′` = ±1 (mod 7)? + −
−6βc′2 ≡ c′ (mod 7) 1 5 4 6 3 5

Arg1(d2 → d3; 2) : 3c′

7
1
7

5
7

4
7

6
7

3
7

5
7

(Arg2 + Arg3)(d2 → d3; 2) 11
14

5
14

1
14

3
14

13
14

5
14

Total Arg(d2 → d3; 2) − 1
14

1
14 − 5

14
1
14

5
14

1
14

c′` ≡ ±1 (mod 7)? + −
−27βc′2 (mod 14) 8 12 4 6 10 12

Arg1(d2 → d3; 3) : − 27βc′2

14
4
7

6
7

2
7

3
7

5
7

6
7

(Arg2 + Arg3)(d2 → d3; 3) 11
14

5
14

1
14

3
14

13
14

5
14

Total Arg(d2 → d3; 3) 5
14

3
14

5
14 − 5

14 − 5
14

3
14

c′` ≡ ±1 (mod 7)? + +

Table 8.22: Table for Arg(d2 → d3; `) in (8.45); 2|c, 3 - c, 7 - c.
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Since c′ is even, we have −3βc′ ≡ 4 (mod 14) and the sign always changes.

For Arg2(d3 → d4; `) we argue as for Arg2(d2 → d3; `) and Arg2(d1 → d2; `). First we have

− 12cs(d4, c) + 12cs(d3, c) ≡ −d4 − a2 + d3 + a5 ≡ 2βc′ (mod c). (8.53)

Then −12cs(d4, c) + 12cs(d3, c) is a multiple of c′. We claim that

− 12cs(d4, c) + 12cs(d3, c) ≡ 4× 2λ (mod 8× 2λ). (8.54)

The proof is the same as the proof for (8.52) and we omit the details. Combining (8.53), (8.54) and (8.8), we

can determine Arg2(d3 → d4; `) with denominator 42 and numerator by 4β (mod 7) and 3 (mod 6), hence

Arg2(d2 → d3; `) =
1, 3, 5, 9, 11, 13

14
when β = 6, 4, 2, 5, 3, 1.

This gives Table 8.23.

Comparing Tables 8.21, 8.22 and 8.23 we see that when 2|c′, 3 - c′ and 7 - c′, Condition 8.3 holds and we

have proved (8.45).

8.2.4 2|c′, 3|c′, 7 - c′

In this case c′ ≡ 6, 12, 18, 24, 30, 36 (mod 42). First we deal with Arg(d1 → d2; `):

Arg1(d1 → d2; `) = −9βc′2`2

14

{
+0 sgn(sin(πa4`7 )/ sin(πa1`7 )) = 1,

± 1
2 sgn(sin(πa4`7 )/ sin(πa1`7 )) = −1.

Now c′ is even, so βc′ ≡ 8 (mod 14). When ` = 1, 2, the sign changes. When ` = 3, the sign remains.

For Arg2 we need to combine (8.8) and (8.11). We have 12cs(d, c) ≡ 0 (mod 2) and

− 12cs(d2, c) + 12cs(d1, c) ≡ −d2 − d2{3c} + d1 + d1{3c} ≡ −βc′ + βc′d2{3c} · d1{3c} (mod 3c). (8.55)

Then −12cs(d2, c) + 12cs(d1, c) is a multiple of c′. After dividing c′, since 3|c′ and dj{3c} ≡ aj{7} (mod 21),

we get

− 84s(d2, c) + 84s(d1, c) ≡ −β + βa4a1 ≡ 3β (mod 21). (8.56)

where the last congruence equality follows since a4a1 ≡ 4 (mod 7) and a4a1 ≡ 1 (mod 3).

We still have (8.48):

−12cs(d2, c) + 12cs(d1, c) ≡ 0 (mod 8× 2λ)

because the proof of (8.48) does not depend on whether 3|c or not. Combining the above two congruences we

have Arg2(d1 → d2; `) = β
7 . Then (Arg2 + Arg3)(d1 → d2; `) = −β7 , which gives Table 8.24.

Next we check Arg(d2 → d3; `) with d2a4 ≡ d3a5 ≡ 1 (mod 7):

Arg1(d2 → d3; `) = −3βc′2`2

14

{
+0 sgn(sin(πa5`7 )/ sin(πa4`7 )) = 1,

± 1
2 sgn(sin(πa5`7 )/ sin(πa4`7 )) = −1.

Now c′ is even, so βc′ ≡ 8 (mod 14). When ` = 1, the sign changes. When ` = 2, 3, the sign remains.
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c′ (mod 42) 2 4 8 10 16 20
β 4 2 1 5 4 6

9βc′2 (mod 14) 4 8 2 6 4 12

Arg1(d3 → d4; 1) : 1
2 + 9βc′2

14 − 3
14

1
14 − 5

14 − 1
14 − 3

14
5
14

(Arg2 + Arg3)(d3 → d4; 1) 1
14

11
14

9
14

3
14

1
14

5
14

Total Arg(d2 → d3; 1) − 1
7 − 1

7
2
7

1
7 − 1

7 − 2
7

c′` ≡ ±1 (mod 7)? + −
18βc′2 ≡ 4c′ (mod 7) 1 2 4 5 1 3

Arg1(d3 → d4; 2) : 1
2 + 4c′

7 − 5
14 − 3

14
1
14

3
14 − 5

14 − 1
14

(Arg2 + Arg3)(d3 → d4; 1) 1
14

11
14

9
14

3
14

1
14

5
14

Total Arg(d2 → d3; 2) − 2
7 − 3

7 − 2
7

3
7 − 2

7
2
7

c′` ≡ ±1 (mod 7)? + −
81βc′2 (mod 14) 8 2 4 12 8 10

Arg1(d3 → d4; 3) : 1
2 + 81βc′2

14
1
14 − 5

14 − 3
14

5
14

1
14

3
14

(Arg2 + Arg3)(d3 → d4; 1) 1
14

11
14

9
14

3
14

1
14

5
14

Total Arg(d3 → d4; 3) 1
7

3
7

3
7 − 3

7
1
7 − 3

7

c′` ≡ ±1 (mod 7)? − −
c′ (mod 42) 22 26 32 34 38 40

β 1 3 2 6 5 3
9βc′2 (mod 14) 2 10 8 12 6 10

Arg1(d3 → d4; 1) : 1
2 + 9βc′2

14 − 5
14

3
14

1
14

5
14 − 1

14
3
14

(Arg2 + Arg3)(d3 → d4; 1) 9
14

13
14

11
14

5
14

3
14

13
14

Total Arg(d3 → d4; 1) 2
7

1
7 − 1

7 − 2
7

1
7

1
7

c′` = ±1 (mod 7)? + −
18βc′2 ≡ 4c′ (mod 7) 4 6 2 3 5 6

Arg1(d3 → d4; 2) : 1
2 + 4c′

7
1
14

5
14 − 3

14 − 1
14

3
14

5
14

(Arg2 + Arg3)(d3 → d4; 2) 9
14

13
14

11
14

5
14

3
14

13
14

Total Arg(d2 → d3; 2) − 2
7

2
7 − 3

7
2
7

3
7

2
7

c′` ≡ ±1 (mod 7)? + −
81βc′2 (mod 14) 4 6 2 10 12 6

Arg1(d2 → d3; 3) : 1
2 + 81βc′2

14 − 3
14 − 1

14 − 5
14

3
14

5
14 − 1

14

(Arg2 + Arg3)(d3 → d4; 1) 9
14

13
14

11
14

5
14

3
14

13
14

Total Arg(d2 → d3; 3) 3
7 − 1

7
3
7 − 3

7 − 3
7

1
7

c′` ≡ ±1 (mod 7)? + +

Table 8.23: Table for Arg(d3 → d4; `) in (8.45); 2|c, 3 - c, 7 - c.
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c′ (mod 42) 6 12 18 24 30 36
β 6 3 2 5 4 1

−9βc′2 (mod 14) 2 4 6 8 10 12

Arg1(d1 → d2; 1) : 1
2 −

9βc′2

14 − 5
14 − 3

14 − 1
14

1
14

3
14

5
14

(Arg2 + Arg3)(d1 → d2; 1) − 6
7 − 3

7 − 2
7 − 5

7 − 4
7 − 1

7

Total Arg(d1 → d2; 1) − 3
14

5
14 − 5

14
5
14 − 5

14
3
14

c′` ≡ ±1 (mod 7)? − +

−18βc′2 ≡ 3c′ (mod 7) 4 1 5 2 6 3

Arg1(d1 → d2; 2) : 1
2 + 3c′

7
1
14 − 5

14
3
14 − 3

14
5
14 − 1

14

(Arg2 + Arg3)(d1 → d2; 2) − 6
7 − 3

7 − 2
7 − 5

7 − 4
7 − 1

7

Total Arg(d1 → d2; 2) 3
14

3
14 − 1

14
1
14 − 3

14 − 3
14

c′` ≡ ±1 (mod 7)? + −
−81βc′2 (mod 14) 4 8 12 2 6 10

Arg1(d1 → d2; 3) : − 81βc′2

14
2
7

4
7

6
7

1
7

3
7

5
7

(Arg2 + Arg3)(d1 → d2; 2) − 6
7 − 3

7 − 2
7 − 5

7 − 4
7 − 1

7

Total Arg(d1 → d2; 3) 3
7

1
7 − 3

7
3
7 − 1

7 − 3
7

c′` ≡ ±1 (mod 7)? + −

Table 8.24: Table for Arg(d1 → d2; `) in (8.45); 2|c, 3|c, 7 - c.

For Arg2(d2 → d3; `) we have

− 12cs(d3, c) + 12cs(d2, c) ≡ −d3 − d3{3c} + d2 + d2{3c} ≡ −βc′ + βc′d3{3c} · d2{3c} (mod c). (8.57)

Then −12cs(d3, c) + 12cs(d2, c) is a multiple of c′. After dividing by c′ we get

− 84s(d3, c) + 84s(d2, c) ≡ −β + βa5a4 ≡ 12β (mod 21) (8.58)

where the last congruence is by a5a4 ≡ 20 (mod 7) and a5a4 ≡ 1 (mod 3).

The equality (8.52) still holds:

−12cs(d3, c) + 12cs(d2, c) ≡ 4× 2λ (mod 8× 2λ)

because its proof does not involve whether 3|c′ or not. Combining the two congruences above we can decide

Arg2(d2 → d3; `) via 4β (mod 7) and 4 (mod 8):

Arg2(d2 → d3; `) =
1, 3, 5, 9, 11, 13

14
when β = 1, 3, 5, 2, 4, 6.

This gives Table 8.25.

Finally we check Arg(d3 → d4; `) with d3a5 ≡ d4a2 ≡ 1 (mod 7):

Arg1(d3 → d4; `) =
9βc′2`2

14

{
+0 sgn(sin(πa2`7 )/ sin(πa5`7 )) = 1,

± 1
2 sgn(sin(πa2`7 )/ sin(πa5`7 )) = −1.

Since c′ is even, we have −3βc′ ≡ 4 (mod 14) and the sign always changes.
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c′ (mod 42) 6 12 18 24 30 36
β 6 3 2 5 4 1

−3βc′2 (mod 14) 10 6 2 12 8 4

Arg1(d2 → d3; 1) : 1
2 −

3βc′2

14
3
14 − 1

14 − 5
14

5
14

1
14 − 3

14

(Arg2 + Arg3)(d2 → d3; 1) 3
14

5
14

1
14

13
14

9
14

11
14

Total Arg(d2 → d3; 1) 3
7

2
7 − 2

7
2
7 − 2

7 − 3
7

c′` ≡ ±1 (mod 7)? − +

−6βc′2 ≡ c′ (mod 7) 6 5 4 3 2 1

Arg1(d2 → d3; 2) : c
′

7
6
7

5
7

4
7

3
7

2
7

1
7

(Arg2 + Arg3)(d2 → d3; 2) 3
14

5
14

1
14

13
14

9
14

11
14

Total Arg(d2 → d3; 2) 1
14

1
14 − 5

14
5
14 − 1

14 − 1
14

c′` ≡ ±1 (mod 7)? + −
−27βc′2 (mod 14) 6 12 4 10 2 8

Arg1(d1 → d2; 3) : − 27βc′2

14
3
7

6
7

2
7

5
7

1
7

4
7

(Arg2 + Arg3)(d2 → d3; 3) 3
14

5
14

1
14

13
14

9
14

11
14

Total Arg(d2 → d3; 3) − 5
14

3
14

5
14 − 5

14 − 3
14

5
14

c′` ≡ ±1 (mod 7)? + −

Table 8.25: Table for Arg(d1 → d2; `) in (8.45); 2|c, 3|c, 7 - c.

For Arg2(d3 → d4; `), first we have

− 12cs(d4, c) + 12cs(d3, c) ≡ −d4 − d4{3c} + d3 + d3{3c} ≡ −βc′ + βc′d4{3c} · d3{3c} (mod 3c). (8.59)

Then −12cs(d3, c) + 12cs(d2, c) is a multiple of c′. After dividing c′ we have

−84s(d4, c) + 84s(d3, c) ≡ −β + βa2a5 ≡ 9β (mod 21).

because a2a5 ≡ 10 (mod 7) and a2a5 ≡ 1 (mod 3). We also have (8.54):

−12cs(d3, c) + 12cs(d2, c) ≡ 4× 2λ (mod 8× 2λ)

because its proof does not involve whether 3|c′ or not. Combining the two congruence equations above we

can decide Arg2(d3 → d4; `) with denominator 56 and numerator determined by 3β (mod 7) and 4 (mod 8),

hence

Arg2(d3 → d4; `) =
1, 3, 5, 9, 11, 13

14
when β = 6, 4, 2, 5, 3, 1.

This gives Table 8.26.

Comparing Tables 8.24, 8.25 and 8.26 we see that when 2|c′, 3|c′ and 7 - c′, Condition 8.3 holds and we

have proved (8.45).

8.2.5 7|c′

This case is 49|c and different from the former ones. We still denote c′ = c/7 while in this case 7|c′, and

denote V (r, c) = {d (mod c)∗ : d ≡ r (mod c′)} for r (mod c′)∗. Now |V (r, c)| = 7 and since (d+ c′, c) = 1
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c′ (mod 42) 6 12 18 24 30 36
β 6 3 2 5 4 1

9βc′2 (mod 14) 12 10 8 6 4 2

Arg1(d3 → d4; 1) : 1
2 + 9βc′2

14
5
14

3
14

1
14 − 1

14 − 3
14 − 5

14

(Arg2 + Arg3)(d3 → d4; 1) 5
14

13
14

11
14

3
14

1
14

9
14

Total Arg(d3 → d4; 1) − 2
7

1
7 − 1

7
1
7 − 1

7
2
7

c′` ≡ ±1 (mod 7)? − +

18βc′2 ≡ 4c′ (mod 7) 3 6 2 5 1 4

Arg1(d3 → d4; 2) : 1
2 + 4c′

7 − 1
14

5
14 − 3

14
3
14 − 5

14
1
14

(Arg2 + Arg3)(d3 → d4; 2) 5
14

13
14

11
14

3
14

1
14

9
14

Total Arg(d3 → d4; 2) 2
7

2
7 − 3

7
3
7 − 2

7 − 2
7

c′` ≡ ±1 (mod 7)? + −
81βc′2 (mod 14) 10 6 2 12 8 4

Arg1(d3 → d4; 3) : 1
2 + 81βc′2

14
3
14 − 1

14 − 5
14

5
14

1
14 − 3

14

(Arg2 + Arg3)(d3 → d4; 3) 5
14

13
14

11
14

3
14

1
14

9
14

Total Arg(d3 → d4; 3) − 3
7 − 1

7
3
7 − 3

7
1
7

3
7

c′` ≡ ±1 (mod 7)? + −

Table 8.26: Table for Arg(d1 → d2; `) in (8.45); 2|c, 3|c, 7 - c.

when (d, c) = 1, we can write V (r, c) = {d, d+ c′, d+ 2c′, · · · , d+ 6c′} for 1 ≤ d < c′ and d ≡ r (mod c′).

We claim that (8.1) is still true:

∑
d∈V (r,c)

e
(
− 3c′a`2

14

)
sin(πa`7 )

e

(
−12cs(d, c)

24c

)
e

(
5d

c

)
= 0, (8.60)

while this time we have seven summation terms. The way we prove (8.60) is to show that there are only three

cases for the sum: all at the outer circle (radius 1/ sin(π7 )), all at the middle circle (radius 1/ sin( 2π
7 )), and all

at the inner circle (radius 1/ sin( 3π
7 )). Moreover, the seven points are equally distributed. Similar as before,

we still denote P1, P2 and P3 for each term in (8.60) and investigate the argument differences contributed

from each term. Note that P1(d) = (−1)ca`/sin(πa`7 ) has period c′. Hence Arg1(d→ d1; `) = 0 always.

If we take any d ∈ V (r, c) and take a (mod c) such that ad ≡ 1 (mod c), then for d∗ = d + c′ and

a∗d∗ ≡ 1 (mod c), we can take a∗ = a−c′, a−2c′, a+3c′, a+3c′, a−2c′, a−c′, when d ≡ 1, 2, 3, 4, 5, 6 (mod 7),

respectively.

In the following two cases, we show the proof when ` = 1. In the other cases ` = 2, 3, only P1 is affected

and we still get (8.60).

8.2.5.1 c is odd

First we suppose 3 - c. When d ≡ 1, 6 (mod c), by (8.10) we have −12cs(d∗, c) + 12cs(d, c) ≡ 0 (mod 6),

− 12cs(d∗, c) + 12cs(d, c) ≡ −d∗ − a∗ + d+ a ≡ 0 (mod c), (8.61)
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and

−12cs(d∗, c) + 12cs(d, c) ≡ 2(d∗c )− 2(dc ) ≡ 0 (mod 8).

Then −12cs(d∗, c) + 12cs(d, c) ≡ 0 (mod 24c) and Arg2(d→ d∗; `) = 0. Since Arg3(d→ d∗; `) = 5
7 , we have

proved that the seven summands in (8.60) are equally distributed with the same radius.

When d ≡ 2, 5 (mod 7), only (8.61) is affected and becomes

− 12cs(d∗, c) + 12cs(d, c) ≡ −d∗ − a∗ + d+ a ≡ c′ (mod c). (8.62)

After dividing 24c′ we get Arg2(d→ d∗; `) = 5
7 in this case and the seven points in (8.60) are still equally

distributed with the same radius.

When d ≡ 3, 4 (mod 7), (8.61) becomes

− 12cs(d∗, c) + 12cs(d, c) ≡ −d∗ − a∗ + d+ a ≡ −4c′ (mod c). (8.63)

We get Arg2(d→ d∗; `) = 1
7 and the same conclusion as before.

Then we investigate the case 3|c′. The following congruence

−12cs(d∗, c) + 12cs(d, c) ≡ 2(d∗c )− 2(dc ) ≡ 0 (mod 8)

still holds and we compute

−12cs(d∗, c) + 12cs(d, c) ≡ −d∗ − d1{3c} + d+ d{3c} ≡ −c′ + c′d1{3c} · d{3c} (mod 3c),

so

−84s(d∗, c) + 84s(d, c) ≡ −1 + a∗a (mod 21).

Since a∗a ≡ 1 (mod 3) and a∗ ≡ a (mod 7), we have

− 84s(d∗, c) + 84s(d, c) ≡


0 (mod 21) if d ≡ 1, 6 (mod 7),

9 (mod 21) if d ≡ 2, 5 (mod 7),

15 (mod 21) if d ≡ 3, 4 (mod 7).

(8.64)

Then −28s(d∗, c) + 28s(d, c) ≡ 0, 3, 5 (mod 7) and Arg2(d→ d∗; `) = 0,3,5
7 by 8{7} ≡ 1 (mod 7), respectively.

We still get the conclusion on equal distribution.

8.2.5.2 c is even

The first case is 3 - c′. Congruences (8.61), (8.62) and (8.63) are still valid here. By (8.11), we define λ ≥ 1

by 2λ‖c′ and claim that

− 12cs(d∗, c) + 12cs(d, c) ≡ 0 (mod 8× 2λ) (8.65)
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To compute this, we have

−12cs(d∗, c) + 12cs(d, c) ≡− d∗ − d1{8×2λ}(c
2 + 3c+ 1)− d1{8×2λ} · 2c( c

d∗
)

+ d+ d{8×2λ}(c
2 + 3c+ 1) + d{8×2λ} · 2c( cd ) (mod 8× 2λ)

≡− c′ + c′(c2 + 3c+ 1)d1{8×2λ} · d{8×2λ}

− d1{8×2λ} · 2c( c
d∗

) + d{8×2λ} · 2c( cd ) (mod 8× 2λ).

After dividing c′ we have

−84s(d∗, c) + 84s(d, c) ≡ −1 + d∗d(c2 + 3c+ 1) + 2( c
d∗

)d∗ − 2( cd )d (mod 8)

≡ c′(c′ + 1)(d+ 1) + 2( c
d∗

)d∗ − 2( cd )d (mod 8).

By 2|(d+ 1), we get

c′(c′ + 1)(d+ 1) ≡


4 (mod 8) if 2‖c, d ≡ 1 (mod 4),

0 (mod 8) if 2‖c, d ≡ 3 (mod 4),

0 (mod 8) if 4|c.
(8.66)

For 2( c
d∗

)d∗ − 2( cd )d (mod 8), when λ ≥ 2 is even, we have ( 2λ

d∗
) = ( 2λ

d ) = 1; when λ ≥ 3 is odd, we

have ( 2
d∗

) = ( 2
d ) = 1. In either case, d∗−1

2 and d−1
2 are of the same parity. Hence when 4|c, we have

( c
d∗

)d∗ − ( cd )d ≡ 0 (mod 4) and have proved (8.65) in this case.

When 2‖c, we have Table 8.27 for val.:= ( c
d∗

)d∗ − ( cd )d (mod 4) using quadratic reciprocity. Combining

d (mod 8) 1 3 5 7
d∗ (mod 8) when c′ ≡ 2 (mod 8) 3 5 7 1

val. 2 0 2 0
d∗ (mod 8) when c′ ≡ 6 (mod 8) 7 1 3 5

val. 2 0 2 0

Table 8.27: Table for val.:= ( c
d∗

)d∗ − ( cd )d (mod 4); 2|c, no requirement for (3, c), 7|c.

Table 8.27 and (8.66) we obtain (8.65).

Combining (8.65) with (8.61), (8.62) and (8.63) shows that Arg2(d→ d∗; `) is constant and proves the

equal distribution property.

When 3|c, we use (8.64) instead of (8.61), (8.62) and (8.63). This finishes the proof of (8.60)when 7|c′.
Now we have proved claim (2) of Theorem 1.15.

8.3 Proof of Theorem 1.15, claim (3)

Here we prove claim (3) in Theorem 1.15: for all 1 ≤ ` ≤ 6, n ≥ 0, 7|c and 7 - A, if A` ≡ ±1 (mod 7) and

c = 7A, we have

e( 1
8 )S(`)
∞∞(0, 7n+ 5, c, µ7) + 2i

√
7S

(`)
0∞(0, 7n+ 5, A, µ7; 0) = 0. (8.67)

We still denote c′ = c/7 = A and V (r, c) := {d (mod c)∗ : d ≡ r (mod c)} for (r, c′) = 1.
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First we rewrite the two Kloosterman sums. As `c ≡ `A (mod 2), by (7.5) and (7.23),

e( 1
8 )S(`)
∞∞(0, 7n+ 5, c, µ7) =

∑
d (mod c)∗

(−1)`A exp
(
− 3πic′a`2

7

)
sin(πa`7 )

e−πis(d,c)e

(
(7n+ 5)d

c

)
. (8.68)

By (7.25), when A` ≡ 1 (mod 7), we denote T by A` = 7T + 1 and

2i
√

7e( 1
8 )S

(`)
0∞(0, 7n+ 5, A, µ7; 0)

= 2i
√

7(−1)A`−[A`]
∑

B (mod A)∗

e

(
( 3

2T
2 + 1

2T )C

A

)
e−πis(B,A)e

(
(7n+ 5)B

A

)
;

(8.69)

when A` ≡ −1 (mod 7), we denote T by A` = 7T − 1 (hence A`− [A`] = A`− 6 = 7(T − 1)) and

2i
√

7e( 1
8 )S

(`)
0∞(0, 7n+ 5, A, µ7; 0)

= 2i
√

7(−1)A`−[A`]
∑

B (mod A)∗

e

(
( 3

2 (T − 1)2 + 5
2 (T − 1) + 1)C

A

)
e−πis(B,A)e

(
(7n+ 5)B

A

)
;

(8.70)

For (r, c′) = 1 and any d ∈ V (r, c), we define P (d) as

P (d) :=
(−1)[A`]e

(
− 3c′a`2

14

)
sin(πa`7 )

e−πis(d,c)e

(
(7n+ 5)d

c

)
=: P1(d) · P2(d) · P3(d). (8.71)

When A` = 7T + 1, we denote Q1(B) = i, Q3(B) = e( (7n+5)B
A ),

Q2(B) := e

(
( 3

2T
2 + 1

2T )C

A

)
e−πis(B,A) and Q(B) =: 2

√
7 ·Q1(B)Q2(B)Q3(B); (8.72)

when A` ≡ −1 (mod 7), we only change the definition of Q2(B) to

Q2(B) := e

(
( 3

2 (T − 1)2 + 5
2 (T − 1) + 1)C

A

)
e−πis(B,A) (8.73)

and still denote Q(B) = 2
√

7 ·Q1(B)Q2(B)Q3(B).

We divide the cases into subsections, which depend on c′` ≡ ±1 (mod 7), `, that A is even or odd, and

that A is divisible by 3 or not. For each r (mod A)∗, recall that d1 ∈ V (r, c) refer to the unique d1 (mod c)∗

such that d1 ≡ 1 (mod 7). We compare P (d1) and Q(B) given B = −d1T and C = −7d1{A}. For the case

when c′` ≡ −1 (mod 7), we choose c′` = A` = 7T − 1, B = d1T and C = −7d1{A}. We will not repeat the

proof in this case but just list a few key intermediate steps at the end.

To compare P (d1) and Q(B), we denote Arg(Qj → Pj ; `) in the following way: suppose Pj(d1) = ReiΘ

and Qj(B) = RBe
iΘB , then

Arg(Qj → Pj ; `) = α if and only if Θ−ΘB = α · 2π + 2kπ for k ∈ Z.

We also denote Arg(Q → P ; `) =
∑3
j=1 Arg(Qj → Pj ; `). Note that if Arg(Qj → Pj ; `) = α, then

Arg(Qj → Pj ; `) = α+ k for all k ∈ Z.
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With the notations above, we claim that the argument differences have the following cases:

A` = 7T + 1 : Arg(Q→ P ; `) = −3

7
,− 5

14
,

3

14
for ` = 1, 2, 3; (8.74)

A` = 7T − 1 : Arg(Q→ P ; `) =
3

7
,

5

14
,− 3

14
for ` = 1, 2, 3. (8.75)

To visualize the argument differences, here are a few examples:

d2

d1=43, Arg:-
61

224

d6

d5

d4

d3

B=5, Arg:
5

32

ℓ=1, V(3,56), B=5. (Arg/2π)

d6

d5

d4

d3
d2

d1=1, Arg:
4

77

B=8, Arg:
9

22

ℓ=2, V(1,77), B=8. (Arg/2π)

d1=22, Arg:-
1

28

d6

d5

d4d3

d2

B=1, Arg:-
1

4

ℓ=3, V(2,35), B=1. (Arg/2π)

d6

d5

d4
d3

d2

d1=1, Arg:
13

63

B=1, Arg:-
2

9

ℓ=1, V(1,42), B=1. (Arg/2π)

d4

d3

d2
d1=22, Arg:

149

476

d6
d5

B=8, Arg:-
3

68

ℓ=2, V(5,119), B=8. (Arg/2π)

d6

d5

d4d3

d2

d1=1, Arg:
1

28

B=1, Arg:
1

4

ℓ=3, V(1,14), B=1. (Arg/2π)

The red circles among the figures are centered at the origin with radii csc(π7 ), csc( 2π
7 ), and csc( 3π

7 ), respectively,

from the outside to the inside. For the styles of the six points P (dj) for dj ∈ V (r, c), we have the following

condition. This condition has been proved by the tables in the former section, corresponding to the rows

marked with “c′` ≡ ±1 (mod 7)?” whose entries are + or −.

Condition 8.4. When c′` ≡ ±1 (mod 7), we have the following six styles for these six points P (d) for

d ∈ V (r, c).

• ` = 1. When c′` ≡ 1 (mod 7), the arguments going d1 → d2 → d3 → d4 → d5 → d6 → d1 are 3
14 , − 3

7 ,
2
7 , − 3

7 , 3
14 , 1

7 , respectively. When c′` ≡ −1 (mod 7), the direction is reversed, as shown in the second

line.

d1 → d2 → d3 → d4 → d5 → d6 → d1

c′ ≡ 1 (mod 7) 3
14 − 3

7
2
7 − 3

7
3
14

1
7

c′ ≡ 6 (mod 7) − 3
14

3
7 − 2

7
3
7 − 3

14 − 1
7
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• ` = 2. The first line is for c′` ≡ 1 (mod 7) and the second line is for c′` ≡ −1 (mod 7).

d1 → d2 → d3 → d4 → d5 → d6 → d1

c′ ≡ 4 (mod 7) − 1
14 − 5

14 − 3
7 − 5

14 − 1
14

2
7

c′ ≡ 3 (mod 7) 1
14

5
14

3
7

5
14

1
14 − 2

7

• ` = 3. The first line is for c′` ≡ 1 (mod 7) and the second line is for c′` ≡ −1 (mod 7).

d1 → d2 → d3 → d4 → d5 → d6 → d1

c′ ≡ 5 (mod 7) 1
7

3
14 − 1

7
3
14

1
7

3
7

c′ ≡ 2 (mod 7) − 1
7 − 3

14
1
7 − 3

14 − 1
7 − 3

7

Through some simple geometry arguments, one can show that, if the six points P (d) for d ∈ V (r, c) satisfy

Condition 8.4, and Arg(Q→ P ; `) satisfies (8.74) and (8.75) in the corresponding cases, then we have∑
d∈V (r,c)

P (d) + 2Q(B) = 0.

One hint is by using

cos(π7 )

sin(π7 )
+

cos( 2π
7 )

sin( 2π
7 )
−

cos( 3π
7 )

sin( 3π
7 )

=
√

7, where
1

sin( jπ7 )
for j = 1, 2, 3 are the radii.

This proves (8.67) by our choices c = 7A, (A, 7) = 1, as well as the fact that B = ∓d1T runs over all residue

classes modulo A and coprime to A when r rums over all residue classes modulo c′ and coprime to c′, for

A` = c′` ≡ ±1 (mod 7). This prove Theorem 1.15.

Subsections §8.3.1-§8.3.4 are devoted to prove (8.74), i.e. the cases A` = c′` ≡ 1 (mod 7).

8.3.1 c′` ≡ 1 (mod 7), 2 - A, 3 - A

Recall d1 ≡ 1 (mod 7) and d1 ≡ r (mod c′). Recall that we define 1 ≤ β ≤ 6 as βc′ ≡ 1 (mod 7) and here

β = `. Note that d1 − βA ≡ 7B (mod 7A):

7B = d1(1−A`) ≡ d1 + (7− d1)`A (mod 7A), so 7B ≡

{
0 (mod 7),

r (mod A).

On the other hand, d1 − βc′ ≡ r (mod A) and d1 − βc′ ≡ 0 (mod 7). The argument difference between P3

and Q3 is easy to compute:

7 Arg(Q3 → P3; `) ≡ 5d1` ≡ 5` (mod 7) (8.76)

which does not depend on n.

Recall d1{7A} ≡ a1 (mod 7A) and B{A} ≡ 7d1{A} (mod A). We have

−84A(s(d1, 7A)− s(B,A)) ≡ −d1 − a1 + d1(1− βA) + 49d1{A}

≡ −d1βA− a1 + 49d1{A} (mod 7A).

Hence

− 84A(s(d1, 7A)− s(B,A)) ≡

{
−2 (mod 7)

48d1{A} (mod A)
(8.77)
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We also have

−84A(s(d1, 7A)− s(B,A)) ≡ −7A− 1 + 2( d17A ) + 7(A+ 1)− 14(BA )

≡ 6 + 2(d1A ) + 2(d1A )( 7
A ) (mod 8),

where the last step is because (A, 7) = 1, (d17 ) = ( 1
7 ) = 1 and 7B ≡ d1 (mod A). By A is odd and

A` ≡ 1 (mod T ), we have ( 7
A ) = ( `7 )(−1)

A−1
2 . Combining 6|12cs(d1, c) and 6|12As(B,A) we conclude

− 84A(s(d1, 7A)− s(B,A)) ≡



18 (mod 24), if A ≡ 1 (mod 4) which requires:

` = 1, 4|T ;

` = 2, T ≡ 7 (mod 8);

or if A ≡ 3 (mod 4) which requires:

` = 3, T ≡ 8 (mod 12);

6 (mod 24), if A ≡ 3 (mod 4) which requires:

` = 1, 2‖T ;

` = 2, T ≡ 3 (mod 8);

or if A ≡ 1 (mod 4) which requires:

` = 3, T ≡ 2 (mod 12).

(8.78)

Next we check the part of Q2 other than e−πis(B,A). Since A is odd and T is even, we have

(
3
2T

2 + 1
2T
)
C ≡ T

2 (3T + 1)(−7d1{A})

≡ T
2 (3− 3A`− 7)d1{A}

≡ −2Td1{A} (mod A).

Then the part of Q2 other than e−πis(d,c) is

e

(
24 · 2d1{A}(−7T )

24 · 7A

)
= e

(
48d1{A}(1−A`)

168A

)
, with numerator ≡


0 (mod 7),

48d1{A} (mod A),

0 (mod 24).

(8.79)

We conclude that

24 · 7AArg(Q2 → P2; `) ≡ R2 (mod 168A) (8.80)

where R2 is determined by (8.77), (8.78) and (8.79): R2 ≡ 0 (mod A), R2 ≡ −2 (mod 7), and R2 ≡
18, 6 (mod 24) depending on the cases in (8.78). Therefore, by A` ≡ 1 (mod 7) and A (mod 4) in (8.78) we

conclude

Arg(Q2 → P2; `) =
23, 11, 13

28
for ` = 1, 2, 3. (8.81)

Then we compute Arg(Q1 → P1; `). When ` = 1, since A is odd, A ≡ 1 (mod 14). Note that both

a1 ≡ 1, 8 (mod 14) give the same result due to the sign of sin(πa7 ). It is direct to get (remember Q1 = i)

Arg(Q1 → P1; 1) =
1

2
− 3

14
− 1

4
=

1

28
. (8.82)
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When ` = 2, we get A ≡ 4 (mod 7) and

Arg(Q1 → P1; 2) =
1

2
− 3

7
− 1

4
= − 5

28
. (8.83)

When ` = 3, we have A ≡ 5 (mod 14) and both a1 ≡ 1, 8 (mod 14) gives the same result. We get

Arg(Q1 → P1; 3) =
1

2
− 9

14
− 1

4
= −11

28
. (8.84)

Combining (8.82), (8.83), (8.84), (8.81), and (8.76), we get

Arg(Q→ P ; `) = −3

7
, − 5

14
,

3

14
for ` = 1, 2, 3. (8.85)

This proves the claim (8.74).

8.3.2 c′` ≡ 1 (mod 7), 2 - A, 3|A

In this case (8.76) still holds. For Arg(Q2 → P2; `), by (8.9) we have

−84A(s(d1, 7A)− s(B,A)) ≡ −d1A`− d1{21A} + 7(−d1T ){3A} (mod 21A).

We have

−84A(s(d1, 7A)− s(B,A)) ≡ −d1A`− d1{3A} + 49(d1 − d1A`){3A}

≡ −d1A`+ (48d1 + d1A`)d1{3A}(d1 − d1A`){3A}

≡ d1A`
(
d1{3A}(d1 − d1A`){3A} − 1

)
+ 48d1{A}

≡ 48d1{A} (mod 3A)

(8.86)

where in the second congruence we used

(x+ y)m − 49x{m} ≡ x{m}(x+ y){m}(−48x− 49y) (mod m)

for (x+ y,m) = (x,m) = 1 and in the last two congruences we used

m1x{m1m2} ≡ m1x{m2} (mod m1m2) (8.87)

for (x,m1m2) = 1. We still have

− 84A(s(d1, 7A)− s(B,A)) ≡ −2 (mod 7). (8.88)

Moreover, (8.78) and (8.79) still hold except the second congruence in (8.79) should be changed to

48d1{A} (mod 3A).

We conclude

24 · 7AArg(Q2 → P2; `) ≡ R2 (mod 168A) (8.89)

where R2 is determined by (8.86), (8.88), (8.78) and (8.79): R2 ≡ 0 (mod 3A), R2 ≡ −2 (mod 7), and

R2 ≡ 18, 6 (mod 24) depending on the cases in (8.78). Therefore, by A` ≡ 1 (mod 7) and A (mod 4) in (8.78)
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we conclude

Arg(Q2 → P2; `) =
23, 11, 13

28
for ` = 1, 2, 3. (8.90)

The condition 3|A does not affect Arg(Q1 → P1; `) and Arg(Q3 → P3; `). Combining (8.90) with (8.82),

(8.83), (8.84), and (8.76), we have proved (8.74) in this case.

8.3.3 c′` ≡ 1 (mod 7), 2|A, 3 - A

Recall (8.76) which will be unchanged, while for Arg(Q2 → P2; `) we have (8.77) and need to use (8.11). Let

λ ≥ 1 be defined as 2λ‖A. Recall B = −d1T and 7T + 1 = A`. We have

−84A(s(d1, 7A)− s(B,A))

≡− d1 − d1{8×2λ}(49A2 + 21A+ 1)− 14d1{8×2λ}A( 7A
d1

)

+ d1(1−A`) + 49(d1 − d1A`){8×2λ}(A
2 + 3A+ 1) + 14B{8×2λ}A(AB )

≡− d1A`+ 49A2 · d1A`(d1 − d1A`){8×2λ}d1{8×2λ}

+ 21A(6d1 + d1A`)(d1 − d1A`){8×2λ}d1{8×2λ}

+ (48d1 + d1A`)(d1 − d1A`){8×2λ}d1{8×2λ}

+ 14A
(
B{8×2λ}(

A
B )− d1{8×2λ}(

7A
d1

)
)

(mod 8× 2λ).

Since 2λ‖A with λ ≥ 1, we apply (8.87) and x2 ≡ 1 (mod 8) (for odd x) to get

−84A(s(d1, 7A)− s(B,A)) ≡ 6d1A+ d1A
2`(1 + `) + 48d1{A}

+ 6A
(
B(AB )− d1( 7A

d1
)
)

(mod 8× 2λ).

By (8.88), To determine B(AB )− d1( 7A
d1

) (mod 4), we use the quadratic reciprocity

(xy )( yx ) = ±(−1)
xo−1

2
yo−1

2 , where xo is the odd part of x

and the ± sign is + if x ≥ 0 or y ≥ 0 and is − if x < 0 and y < 0. By B < 0 odd and A > 0, we compute

B(AB )− d1( 7A
d1

) ≡ −d1T (BA )(−1)
A
2λ
−1

2 ·B−1
2 − d1( d17A )(−1)

7· A
2λ
−1

2 · d1−1
2

≡ −d1T (d1−d1A`A )( 7
A )(−1)

A
2λ
−1

2 ·B−1
2 − d1(d1A )(−1)

7· A
2λ
−1

2 · d1−1
2 (mod 4)

(8.91)

Here are the cases:

1. If 4|A, then we have T ≡ 1 (mod 4), B ≡ −d1 (mod 4). Moreover, (d1−d1A`A ) = (d1A ) always (note that A

is even and we have to consider (d12 )). Now the above congruence (8.91) simplifies to ( `7 )d1 + 1 (mod 4).

In this case d1A
2`(1 + `) ≡ 0 (mod 8× 2λ) and we conclude

− 84A(s(d1, 7A)− s(B,A)) ≡

{
2A+ 48d1{A} (mod 8× 2λ), ` = 1, 2;

6A+ 48d1{A} (mod 8× 2λ), ` = 3.
(8.92)

2. If 2‖A and ` = 1, then T ≡ 3 (mod 4), B ≡ d1 (mod 4) and the above (8.91) simplifies to d1−1 (mod 4).

Then as A(12d1 − 6 + 2d1A) ≡ 2A (mod 8× 2λ), we conclude the same as the first line of (8.92).
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3. If 2‖A and ` = 2, then T ≡ 1 (mod 4), B ≡ −d1 (mod 4), and (d1−d1A`A ) = −(d1A ). Now (8.91) gives

d1 − 1 (mod 4) and we again get the first line of (8.92).

4. If 2‖A and ` = 3, then T ≡ 3 (mod 4), B ≡ d1 (mod 4), and (A7 ) = ( 3A
7 )( 3

7 ) = −1. Here (8.91) results

in d1 − 1 (mod 4) again. Note that d1A
2`(1 + `) ≡ 0 (mod 8× 2λ) and we get the second line of (8.92).

Next we check the part of Q2 other than e−πis(d,c). In this case A is even, so 3T + 1 is even and we have

(
3
2T

2 + 1
2T
)
C ≡ 3T+1

2 · T (−7d1{A}) ≡
3T + 1

2
d1{A} (mod A).

When written with denominator 24 · 7A, we have

e

(
( 3

2T
2 + 1

2T )C

A

)
= e

(
36A`d1{A} + 48d1{A}

24 · 7A

)

whose numerator is

36A`d1{A} + 48d1{A} ≡


0 (mod 7),

48d1{A} (mod 3A),

4A+ 48d1{A} (mod 8× 2λ), ` = 1, 3,

48d1{A} (mod 8× 2λ), ` = 2.

(8.93)

Combining the above computation with (8.77), (8.92) and (8.8), we get

Arg(Q2 → P2; `) =
9, 11, 27

28
for ` = 1, 2, 3. (8.94)

Then we compute Arg(Q1 → P1; `). When ` = 1, since A is even, A2 ≡ 4 (mod 7). Note that a1 ≡ 1 (mod 14)

because a1 is odd. It is direct to get (remember Q1 = i)

Arg(Q1 → P1; 1) =
1

2
− 5

7
− 1

4
= −13

28
. (8.95)

When ` = 2, we get A
2 ≡ 2 (mod 7) and

Arg(Q1 → P1; 2) =
1

2
− 3

7
− 1

4
= − 5

28
. (8.96)

When ` = 3, we have A
2 ≡ 6 (mod 14) and

Arg(Q1 → P1; 3) =
1

2
− 1

7
− 1

4
=

3

28
. (8.97)

Combining (8.95), (8.96), (8.97), (8.94), and (8.76), we get

Arg(Q→ P ; `) = −3

7
,− 5

14
,

3

14
for ` = 1, 2, 3. (8.98)

8.3.4 c′` ≡ 1 (mod 7), 2|A, 3|A

Comparing to the former case, the only difference in getting Arg(Q2 → P2; `) in (8.94) is that we should

using (8.86) instead of (8.77). The result (8.94) still holds in this case. The condition 3|A or 3 - A does not
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affect the computation for Arg(Q1 → P1; `) and Arg(Q3 → P3; `), hence we still have

Arg(Q→ P ; `) = −3

7
,− 5

14
,

3

14
for ` = 1, 2, 3. (8.99)

Now we have finished the discussion in all the cases for A when A` ≡ 1 (mod 7) and proved (8.67).

For the other case A` ≡ −1 (mod 7), we will not repeat the same process but just list the key argument

differences below. For every r (mod c′)∗, we compare P (d) (8.71) given d = d1 ∈ V (r, c) and Q(B) (8.73)

given T := A`+1
7 > 0, B = d1T and C = −7d1{A}. Now 7B = d1 + d1A`. We shall get Table 8.28.

Case 2 - A: ` = 1 ` = 2 ` = 3
Arg(Q1 → P1; `) − 1

28
5
28

11
28

Arg(Q2 → P2; `) 5
28 − 11

28 − 13
28

Arg(Q3 → P3; `) 2
7 − 3

7 − 1
7

Arg(Q→ P ; `) 3
7

5
14 − 3

14

Case 2|A: ` = 1 ` = 2 ` = 3
Arg(Q1 → P1; `) 13

28
5
28 − 3

28

Arg(Q2 → P2; `) − 9
28 − 11

28
1
28

Arg(Q3 → P3; `) 2
7 − 3

7 − 1
7

Arg(Q→ P ; `) 3
7

5
14 − 3

14

Table 8.28: Table for the case A` ≡ −1 (mod 7)

We have finished the proof of claim (3) in Theorem 1.15 and finished the proof of this theorem.

8.4 An extra coincidence

The following lemma may provide some information about the key equation defining xr for every integer

r ≥ 0 in (2.37):
3

2
x2 − 2r + 1

2
x+

1

24
= 0.

Lemma 8.5. For k ∈ Z and k ≥ 2, let xk be the only root in (0, 1
2 ) of the quadratic equation 3

2x
2− 2k−1

2 x+ 1
24 =

0. Let 0 ≤ [p]24 < 24 denote the residue of a prime p modulo 24. Then the following two quantities are equal:

(1) the smallest prime p > x−1
k ;

(2) the smallest prime p such that S p−2
2

(SL2(Z), ν−pη ) = k, where Sw(Γ, ν) is the space of weight w

holomorphic cusp forms on Γ with multiplier system ν.

Remark. Let bxc denote the floor of x. Since [p]24+p−2
2 6≡ 2 (mod 12) for every prime p 6= 3, we have

dimS p−2
2

(SL2(Z), ν−pη ) = dimS [p]24+p−2
2

(SL2(Z)) =

⌊
[p]24 + p− 2

24

⌋
.

Clearly the dimension of this space is non-decreasing when p increases.

Proof. First observe that when k = 2, we have x−1
2 = 34.97 · · · and p = 37 is the prime for both (1) and (2).

Then we consider k ≥ 3.
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Let the positive integer t be defined as p = [p]24 + 24t. Then

⌊
[p]24 + p− 2

24

⌋
=

{
t 1 ≤ [p]24 ≤ 11,

t+ 1 13 ≤ [p]24 ≤ 23.

This shows that for p in condition (2) we must have 13 ≤ [p]24 ≤ 23 and k = t+ 1. Hence, p in condition (2)

is the smallest prime such that

[p]24 + p− 2

24
≥ k ⇔ [p]24 + 12t ≥ 12k + 1 ⇔ p ≥ 24k − 11.

We claim that −2 < x−1
k − (24k− 11) < 0. If this is true, since 24k− 11 is odd, there is no prime between

x−1
k and 24k − 11, hence the lemma is proved. It is easy to compute that x−1

k = 12k − 6 + 12
√
k2 − k. When

k ≥ 3, we have √
k2 − k − k =

−1√
1− 1/k + 1

∈

(
−1

1 +
√

2/3
, −1

2

)
⊂
(
−5

9
, −1

2

)
.

Then

x−1
k − (24k − 11) = 5 + 12

(√
k2 − k − k

)
∈
(
−15

9
,−1

)
⊂ (−2, 0).

This finishes the proof.
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Ono]”, in Séminaire Bourbaki 60ème année, 2007-2008, no 986, ser. Astérisque 326, Société mathématique
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