VANISHING PROPERTIES OF KLOOSTERMAN SUMS AND DYSON’S
CONJECTURES, WHOLE PROOF

QIHANG SUN

ABSTRACT. In a previous paper [Sun24], the author proved the exact formulae for ranks
of partitions modulo each prime p > 5. In this paper, for p = 5 and 7, we prove special
vanishing properties of the Kloosterman sums appearing in the exact formulae. These
vanishing properties imply a new proof of Dyson’s rank conjectures. Specifically, we give a
new proof of Ramanujan’s congruences p(5n + 4) =0 (mod 5) and p(7n 4+ 5) =0 (mod 7).

1. INTRODUCTION

Let p(n) denote the integer partition function. Ramanujan obtained the famous congru-
ence properties of p(n):

p(bn+4) =0 (mod 5), p(Tn+5) =0 (mod 7), p(lln+6) =0 (mod 11). (1.1)

In 1944, Dyson |[Dys44] defined the rank of a partition and conjectured a beautiful explana-
tion for Ramanujan’s congruences. Suppose A = {A; > Ay > -+ > A} is a partition of n,
i.e. D771 Aj =n. Then the rank of A is defined by

rank(A) := Ay — &
Let the quantities N(m,n) and N(a,b;n) be defined by
N(m,n) := #{A is a partition of n : rank A = m} (1.2)
and
N(a,b;n) := #{A is a partition of n : rank A = a (mod b)}. (1.3)

Let ¢ = exp(2miz) = e(z) for z € H and w be a root of unity. The generating function of
N(m,n) is given by (see e.g. [BO0OG, p. 245])

o0 2

R(w;q)::l—i—z Z N(m,n)wmqnzl—l—Z( i

wq; Q)W q)n

(1.4)

n=1 m=—o0 n=1

where (a;q), = H;L:_é (1 — ag?). Dyson made the following conjectures which were proved
by Atkin and Swinnerton-Dyer in 1953.
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Theorem 1.1 (JASD54]). For all n > 0, we have the following identities:

N(1,5;5n +1) = N(2,5;5n + 1); (5-1)
N(0,5;5n +2) = N(2,5;5n + 2); (5-2)
N(0,5;5n + 4) = N(1,5;5n + 4) = N(2,5: 5n + 4); (5-4)
N(2,7;7n) = N(3,7;7Tn); (7-0)
N, 7;7n+1) = N2, 7;Tn+ 1) = N(3,7; Tn + 1); (7-1)
N(0,7:7n +2) = N(3,7:Tn + 2); (7-2)
NO,7:7n+3) = N(2,7:Tn+3), N(1,7:Tn+3) = N(3,7:7n + 3); (7-3)
N(0,7;7n +4) = N(1,7:Tn + 4) = N(3,7; Tn + 4); (7-4)
N(O,7:7n+5) = N(1,7;Tn + 5) = N(2,7:Tn + 5) = N(3,7; Tn + 5); (7-5)
N(0,7;7n+6)+ N(1,7,7n+6) = N(2,7,7n 4+ 6) + N(3,7; Tn + 6). (7-6)
Remark. By N(a,b;n) = N(—a,b;n), the identity (5-4) implies
N(0,5;5n+4) = N(1,5;5n+4) = - = N(4,5;5n + 4) = Lp(5n + 4)
hence p(5n 4+ 4) = 0 (mod 5). The identity (7-5) implies
N(0,7;7n+5) = N(1,7;Tn+5) = --- = N(6,7;Tn 4+ 5) = 2p(7n +5)

hence p(7n +5) =0 (mod 7).

The proof of Theorem [1.1]in [ASD54] involves identities of generating functions

(N(a,p;pn + k) — N(b,p;pn + k) 2" [ (1 - ")
n=0 r=1

for p = 5,7 and certain choices of the integer k. See [ASD54, Theorem 4 & Theorem 5] for
details. Recently, Garvan [Garl7, §6] gave a new and simplified proof of Dyson’s conjectures.

For
e’} p—1
=1Ja-am > (Z N(k,p;pn — ”2—11)4,?) q",

n=1 n=[(p*—1)/24p] \k=0
with ¢, := e(zl)) and /C,, ,,(z) defined in [Garl7, Definition 6.1], Garvan showed that /C, o(2) is
a weakly holomorphic modular form of weight 1 on I';(p). By the Valence formula, Garvan
proved Ks(z) = K70(2) = 0 and hence proved the Dyson’s conjectures in [Garl7, §6.3].

For integers b > a > 0, denote A($;n) as the Fourier coefficient of R((y; q):

R(¢q) 1+ZA( )

where ¢, = exp(27”) is a b-th root of unity. There is an important equation which explains
the relation between A(%;n) and N(a, b;n):

Kpo(z)

bN(a,b;n)

) + Zgb 9 A ( ) (1.5)
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It is not hard to show that A({;n) € R and A(j' n) = A(l—1%;n) for 1 < j < b—1, because

N(a,b;n) = N(—a,b;n) and ¢, “ + ¢, = 2cos(™). Specifically, if we know the values
of A(Z;n) for 1 < j <b—1, then we know the value of

N(ay,b;n) — N(ag,b;n) for any 0 < ay,ay < b— 1.

Another way of approaching Dyson’s conjectures is therefore via the formulae for A(%; n)
when b =5,7. In 2009, Bringmann [Bri09, Theorem 1.1] proved the asymptotic formula for
A(b7 n) when b > 3 is odd and 0 < j < b— 1. Bringmann used the asymptotic formula when
b = 3 to prove the Andrews-Lewis conjecture about comparing N(0,3;n) and N(1,3;n).
In a previous paper [Sun24|, for each prime p > 5 and 1 < ¢ < p — 1, the author proved
that Bringmann’s asymptotic formula, when summing up to infinity, is the exact formula for
A(ﬁ; n) for all n > 0. For each integer A, denote [A] by

0<[A]<7: [A]=A (mod7).
When p =5 or 7, that exact formula reduces to the following corollary.

Theorem 1.2 ([Sun24, Corollary 2.2]). For every positive integer n, when p =5 and 1 <
¢ <4, we have

¢ 2me(—1) sin(% She (0 dmy/24m — 1
4 (—;n) _ me( S)Sln(l5) Z ( ,n,cn%)h ( T/ 24n ) ; (1.6)
5 (24n —1)3 5= c 2 24c
whenp="7 and 1 < ¢ <6, we have
4 (f ) 27e(—1) sin(%) Z Séﬁ)oo((), n,c, ,u7)I (47‘(‘\/2471 - 1)
_’n = 1 1
7 (24n—1)x 4= c 2 24c
.t © : — (L.7)
4 sin(%F) Soe (0,1, a, pr; 0) 4\/24n — 1
+ — i Z I ’
(24n — 1) o07a VTa 2 24 X Ta
[al]=1 or 6

Here Sé?oo((), n,c, ) forp=>5,7 and Sé?o (0,n,a, u7;0) are given in (2.7), (2.8) and (2.9).

Theorem gives us a new way to directly compute A(ﬁ; n) for p = 5,7 and all £. In this
paper, we give a new proof of Theorem by establishing the following vanishing properties

of the Kloosterman sums Séﬁlo(o, n,c, i) for p=>5,7 and S(()?O (0,n,a, p7;0). This is totally
different from the methods in [ASD54] and [Gar17].

Theorem 1.3. (i) For all integers n > 0 and 1 < ¢ < p —1 for p = 5,7 (denoted by p|c
below), we have the following vanishing conditions for the Kloosterman sums appeared in
Theorem [1.2:

(5-4) If 5|c, we have Séﬁéo((), bn+4,c¢,us) = 0.
(7-51) If Tle, £ - £ #£1 (mod 7), and & - £ # —1 (mod 7), then SE(0,7n + 5, ¢, j17;0) = 0.
(7-5,2) If Tlc, Tta, al = +1 (mod 7), and ¢ = Ta, we have

e(—1)SY (0,7 + 5, ¢, 7)) + 2v/T7 S5 (0, Tn + 5, a, i7; 0) = 0.
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.. b amy\ br
(it) Furthermore, we denote Cp® := cos(%}) — cos(7) and

Sge)(n, ) = sin(%e) (e(—%)SéﬁLO(O, n, ¢, i) + 1 gme/7 - 2\/?5623(0, ™+ 5, a, jur; O))
[al]=1,6

for simplicity, where 1 onaition equals 1 if the condition meets and equals 0 otherwise. We
also have the following vanishing conditions for all ¢ € Z divisible by p, where p =15 or 7 is
marked at the subscript of C’g’b:

ct sin(%)S&Zm(O, 5n+1,¢ p5) + Cs” sin(%’r)S 20,50 + 1, ¢, u5) =0, (5-1)
Co*sin(Z2) S (0,5n + 2, ¢, ps) + C5 sin(Z)SE_(0,5n + 2, ¢, us) = 0, (5-2)
255 (Tn, ¢) + €282 (Tn, ¢) + €245 (Tn, ¢) = 0, (7-0)
C“S§1 (Tn+1,¢) + CH8D (Tn +1,¢) + €288 (Tn + 1, ¢) = 0, (7-1,1)
O (T +1,¢) + C828P (Tn + 1,¢) + C2*SP (Tn + 1,¢) = 0, (7-1,2)
55N (Tn + 2, ¢) + C¥28P (Tn + 2, ¢) + CO*SP (Tn + 2,¢) = 0, (7-2)
co 19 (7n + 3, ¢) + CY°SP (Th + 3, ¢) + c° 257 (Tn +3,¢) =0, (7-3,1)
C255M (Tn +3,¢) + 28D (Tn + 3,¢) + C8*SP (Tn + 3,¢) = 0, (7-3,2)
928 (7Tn + 4, ¢) + CO*SP (Th + 4, ¢) + CO 658 (7Tn 4+ 4,¢) =0, (7-4,1)
C255 (Tn + 4, ¢) + 225 (Tn + 4, ¢) + C84 5 (Th + 4, ¢) = 0, (7-4,2)

(O + C29) S (Tn + 6,¢) + (C2F + C2%) SP(Tn + 6, ¢)
+ (022 4 8 SP(Tn + 6,¢) = 0, (7-6)

Using and Theorem , we have the following corollary.
Corollary 1.4. For any pair (p-k) (or (p-k,t) for both t = 1,2) in Theorem [1.5 with
p=>5, ke{l1,2,4} or p=7, ke {0,1,2,3,4,5,6},
we have Dyson’s conjecture (p-k) in Theorem[1.1]

The paper is organized as follows. In Section [2| we review about our notations of vector-
valued Kloosterman sums as in [Sun24]. In Section [3| we give the detailed proof of (5-4) of
Theorem In Section 4] and Section [5| we prove (7-5) of Theorem Section [6] is the
proof of the remaining part, i.e. part (ii) of Theorem .

2. NOTATIONS

In this section we define some notation involving Dedekind sums and Kloosterman sums.
For the origin of these notations, see [Garl7, [Sun24].
For integers d and m > 1, let dy,,,y denote the inverse of d (mod m). If there is a subscript,

e.g. dy, then we write dy () as the inverse of d; (mod m).

Define
_Ja—|z]—3, whenzeR\Z,
((z)) = { 0, when z € Z.
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For integers ¢ > 0 and (d, ¢) = 1, we define the Dedekind sum as

s(de)i= 3 ((g)) ((d—;”)) . (2.1)

r (mod ¢)

Here we use the notation r (mod ¢) to indicate that the summation is taken over all residue
classes modulo ¢. Similarly, r (mod ¢)* denotes that the summation is restricted to reduced
residue classes, where ged(r,¢) = 1. For simplicity in more complex subscripts, we will
abbreviate these as r(c) and r(c)*, respectively.

The Dedekind sums have the following properties [Lew95, (4.2)-(4.5)]:
20cs(d,c) € Z, where 6 = ged(c, 3), (2.2)
12¢s(d, ) = d + dggey (mod bc), (2.3)
12¢s(d, c) = ¢+ 1 —2(%) (mod 8), if ¢ is odd, (2.4)
12cs(d,c) = d+ (¢ + 3¢+ 1+ 2¢(5)) digxory (mod 8 x 24), if 2M[jc for A > 1. (2.5)

These congruences determine 12¢s(d, ¢) (mod 24¢) uniquely in every case (2|c or 21 ¢, 3|c or
31c).

In the proof we use the following quadratic reciprocity of the Kronecker symbol (). For
any non-zero integer n, write n = 2*n, where n, is odd. For integers m,n with (m,n) = 1,

we have
MY (T 1\ me-1)(ne—1)/4
<n> <m> +(=1) ’ (2.6)

where we take + if m > 0 or n > 0, and we take — if m < 0 and n < 0.

Next we define the Kloosterman sums Sé?oo((),n, ¢, ) for p = 5,7 and S(()fl((),n, ¢, pr; 0)
appearing at Corollary We follow the notations of vector-valued Kloosterman sums in
[Sun24! §4.3]. From [Sun24l (5.19), (5.29)], when p|c we have

-1 Kce _3ca§2 . d
SO Omem)=e(- Y TGS o, (™). e
) sin(™2) c
d (mod c) p
ad=1 (mod c¢)

When p = 7, recall that [A¢] is the least non-negative residue of A¢ (mod 7). From [Sun24],
(5.31)], when A¢ = 7T + 1 for some integer T' > 0, we have

372 4 I .
S0, A ir0) = (-1pen 3 (WS e (M) oy

A
B (mod A)*
0<C<TA,7|C
BC=—1(A)
When A¢ = 7T — 1 for some integer 7' > 1, we have

Ség(O,n,A, 1258 0)
3 2,5
()AL Z . ((i(T 1) +3(T-1)+ 1)0) o—is(B.A) (@) (29

A
B (mod A)
0<C<TA,7|C
BC=-1(A)

If [A] # 1 and [Af] # 6, then S\ (0,n, A, pz;0) := 0.
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3. PROOF OF (5-4) OF THEOREM

In this section we prove (5-4) of Theorem . We only consider ¢ = 1,2 because A(ﬁ; n) =
Define ¢ := ¢/5. For any integer r with (r,) = 1, we define

V(r,c) :={d (mod ¢)*: d=r (mod )}
For example, V(1,30) = {d (mod 30)* : d = 1,7,13,19 (mod 30)} and V'(4,25) = {d (mod 25)* :
d=4,9,14,19,24 (mod 25)}. Clearly, |V (r,c)| = 4 if 5||c and |V (r,c)| = 5 if 25|c. Moreover,
(Z/cZ)* is the disjoint union

z/cz) = |J V(o).

r (mod ¢/)*

By (2.7) we have

—1)tee(—3cal2 4 5n + 4)d
e(%)SéO)OO(O bn+4, ¢, pus) = E (=1) (me 10 >e_7”s(d’c)e —< ) . (3.1)
d (mod c¢)* Sln( 5 ) ¢
ad=1 (mod c¢)

We claim the following proposition.
Proposition 3.1. For { = 1,2, the sum on V(r,c) satisfies

6( 30’aé2) —mis(d,c 4d
Sy i= Z —Wlaoz)e (de)e (—> = 0. (3.2)

S1n
deV(r,c) ( 5
ad=1 (mod c)

If Proposition is true, then
. nr
ng))oo(O, bn+4,c,us) = e(—%)(—l)e Z Sp.c€ <?) =0

for all n € Z, £ = 1,2, and we have proved (5-4) of Theorem [1.3]

In the following subsections §7.1-§7.4, we prove Proposition [3.1|when 5||c. In §7.5, we prove
Proposition when 25|c. Suppose now that 5||c. Since |V (r,c)| = 4, let § € {1,2,3,4}
such that ¢’ =1 (mod 5) and we make a special choice of V(r,c) as

V(?”, C) = {dl, dg, dg, d4} where dj E] (mod 5) and dj+1 = dl +jBC/. (33)
We also take a; for j € {1,2,3,4} such that a; = j (mod 5), a;41 = a1 + jB¢, and
a:—d; =1 (mod c). (3.4)

J{s)
These choices do not affect the sum (3.2)) because s, has period ¢ in both a and d. In (3.2),
we denote each summation term as

Pld) = %e (_12%(?@)) e (%d) _ P(d)- B(d)- Py(d),  (3.5)

where Py(d) := e(—3< aﬁ)/sm(me) Py(d) == exp(—mis(d,c)), and P3(d) := e(2).

Remark. We keep 24c in the denomlnator of Pg(d) because the congruence properties of the
Dedekind sum are of the form 12¢s(d, ¢). See (2.2)-(2.5) for details.
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We claim that the set of points P(d) for d € V(r,¢) must have the relative position
illustrated in one of the following six configurations. Here 0 < d; < c for simplicity but we

use (i3.3)) in the proof.

/=1, points for V(2,55) /=1, points for V(7,90) /=1, points for V(15,95)

dp=2
=91
dy=46
<72
/=2, points for V(2,65) /=2, points for V(9,55) /=2, points for V(3,35)
d3=28
d3=3
d\z\
=17

Here we explain the styles. Each graph above has two circles with inner one of radius
csc(%) and outer one with radius csc(Z). When ¢ = 1, the value of P(d;) and P(dy) will
be on the outer circle (P(dy) and P(d3) on the inner circle) because the term P;(d;) has
denominator sin(™4%). When ¢ = 2, P(d;) and P(d4) will be on the inner circle.

5
We describe the relative argument differences via the following notation. Let

Arg;(d, — dy;€), for j € {1,2,3}, u,v € {1,2,3,4}, and ( € {1,2} (3.6)

be the argument difference (as the proportion of 27, positive when going counter-clockwise)
contributed from P; going from d, to d, when ¢ € {1,2}. To be precise, if we denote
P;(d,) = R;,exp(i©;,) for R;,,0;, € R, then

Arg;(d, — dy;l) =a <& ©O;, — 0, =a- 21+ 2kn for some k € Z.

We say that two argument differences equal: Arg;(d, — dy; /) = Arg;(dy, — dy;€) or say
Arg;(d, — dy; ) = o if their difference is an integer.

Although the P, and P; terms are not affected by the value of ¢ in , we still use
the notations Argy(d, — d,;¢) and Arg,(d, — d,;¥¢) to indicate the different cases for ¢.
Moreover, we define

3
Arg(dy, — dy; 0) =Y Arg;(dy — dy; () (3.7)
j=1
as the argument difference in total.
The following condition ensures Proposition |3.1

Condition 3.2. We have the following six styles for the relative position of these four points.
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o [ = 1. First graph style: the arguments going di — dy — ds — dy — dy are %, %,

%, and 1%, respectively. The second graph style is that all the argument differences
are %, while the third graph style has the reversed order of rotation compared with the

first one.
Arg(d, > dy; 1) \(|di — dy — d3 — dy — dy
d =1 (mod 5) s L s s
¢ =2,3 (mod 5) 3 3 3 3
¢ =4 (mod 5) —% —% —% —13—0

e ( = 2. Here are the styles for the graphs in the second row.

Arg(du — dv§ 2) \ di — do — d3 — di — dy
¢ =3 (mod b) —% _1% _§ %0

¢ =1,4 (mod 5) 0 . 0 !
¢ =2 (mod 5) % % % _%

One can check that, whenever the four points on C satisfy any of the above cases of relative
argument differences and corresponding radii, their sum becomes 0. This can be explained
by

cos(15) _ cos(32)

1
_ d
sin(Z)  sin() sin(z) " sin(Z)

Before we divide into the cases, we first claim the following lemma:
Lemma 3.3. For ( € {1,2}, we have

Arg(dy — do; 0) +Arg(dy — d3;0) =0 and  Arg(dy — ds; )+ Arg(dy — da;0) = 0. (3.8)

=1, where are the radii.

Granted the above reduction, to prove that each case of the argument differences are one
of the cases in Condition 3.2, we only need to verify that

Arg(dy — dg;0) and  Arg(dy — do;0) for £ =1,2

satisfy Condition [3.2] We prove this by enumerating all of the cases. We can list the
argument differences for Arg, and Arg,, but for Arg,, we require the congruence properties

of Dedekind sums in (2.2)-(2.5).
Proof of Lemma (3.3 Note that
Arg(d, — dy;0) = Arg(d, — dy; l) + Arg(d, — dy; )
for all u,v,w € {1,2,3,4}. Then it suffices to prove
Arg(dy — dao; 0) = Arg(ds — dy; 0).

Recall our notation for d; and a; in (3.3). Since ag — a1 = a4 — ay = 26¢/, one can show
Arg,(dy — do; 0) = Arg,(ds — dy; 0) by

sgn (sin(=54)/ sin(4)) = sgn (sin(2)/ sin(2)) = 1.

It is also easy to show Args(dy — da; {) = Argy(ds — dy; ().
For Arg,, we apply (2.3), (2.4) and (2.5)) with the Chinese Remainder Theorem to show

12¢s(ds, ¢) — 12¢s(dy, ¢) = 12¢s(dy, ¢) — 12¢s(ds, ¢) (mod 24c)

in the following cases.
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When ged(c, 3) = 1, we recall dy — dy = dy — d3 = ¢’ and have

12¢s(da, ¢) — 12¢s(dy, ¢) = dy + a3 — dy — ay = 36¢ (mod c¢), (3.9)
12¢s(dy, ¢) — 12¢s(d3, ¢) = dy + ay — d3 — a = 33 (mod ¢), (3.10)
12¢s(dy, ¢) — 12¢s(dy, ¢) = 12¢s(dy, ¢) — 12¢s(d3, ¢) = 0 (mod 6). (3.11)

When 3|¢, we apply the congruence
(& + Y my — Ty = —Y(@ + Y) ) - Ty (mod m) (3.12)

to compute
dy + dygzey — di — digzey = B (1 — dagzey - digzey) (mod 3c),
dy + dagzey — ds — dazey = B (1 — dugzey - dagaey) (mod 3c),
which imply
12¢s(dy, ¢) — 12¢s(dy, ¢) = 12¢s(dy, ¢) — 12¢s(ds, ¢) = 0 (mod )
by (2.3). After dividing by ¢ (recall that the denominator of P»(d) is 24c), we have
60s(da, c) — 60s(d1, c) = B(1 — dagzey - digzey) = B(1 — azar) (mod 15), (3.13)
60s(dy, c) — 60s(ds, c) = B(1 — dagze) - ds(zey) = B(1 — asaz) (mod 15), (3.14)

because of (3.4)) and Z{,,} = T(pny (mod n). Since ag = a; (mod 3) and a4 = ay (mod 3), we
have aga; = agay = 1 (mod 3). Moreover, aza; = agas = 3 (mod 5). Hence aza; = aqas =
13 (mod 15) and we get

60s(dz, ¢) — 60s(dy, c) = 60s(dy, ¢) — 60s(ds, c) = 30 (mod 15). (3.15)
When c is odd, by and d;, =
12¢s(da, ¢) — 12es(d1, ) = 2(2) — 2(2) = 2(5)(%) — 2(3)(2)
126s(da, ) — 12es(ds,€) = 2(%) — 2(%) = 2(2)(%) — 2(2)(%)
When c is even and 2*||c for A > 1, by and (3.12) we have

12¢s(dy, ¢) — 12¢s(dy, ¢) = da + (¢° + 3¢+ 1)dogggeory + 20(d3)m

—dy — (& + 3¢+ D)dysery — 2¢(5 ) digsxary

= B¢/ (1 = (¢ + 3¢+ 1)dagsxory - digsxary)

+2¢( ) dagswary — 2¢(5 )digsx2ry (mod 8 x 24).

)
)

, (mod ¢’), we have

4 (mod 8), (3.16)
4 (mod 8). (3.17)

Since 12¢s(dy, ¢) — 12¢s(dy, ¢) is a multiple of ¢ by the discussion of ged(c,3) = 1 or 3|c
above, by dividing ¢’ and by 22 = 1 (mod 8) for odd z we have

60s(d, ¢) — 60s(dy, c) = B(1 — (¢® + 3¢+ 1)dody) + 2(£ “)dy — 2()dy (mod 8).
Similarly, 12¢s(dy, ¢) — 12¢s(ds, ¢) is a multiple of ¢ and

60s(dy, ¢) — 60s(ds, c) = B(1 — (¢ + 3¢+ 1)dads) + 2(:= “)dy — 2()d3 (mod 8).
Dividing into cases for 4|c or 2||c with ¢ =2 or 6 (mod 8), one can conclude

d2d1 = d4d3 (mod 8)



VANISHING KLOOSTERMAN SUMS, WHOLE PROOF 10
For the remaining part, we only need to determine (dij)dj = +1 (mod 4) for j € {1,2,3,4}.

Since d3 = dy (mod 4) and dy = dy (mod 4), it is not hard to show that

(é)dg — (d_cl>d1 = (é)d4 — (d—63>d3 (mod 4)
Now we have proved that when c is even,
60s(ds, ¢) — 60s(dy, c) = 60s(dy, c) — 60s(ds, ¢) (mod 8). (3.18)
Combining (3.9), (3.10), (3.11)), (3.15)), (3.16)), (3.17), (3.18]), we have shown
Arg,(dy — da; ) = Argy(ds — dy; 0)  for £ € {1,2}

by proving
12¢s(dy, ¢) — 12¢s(dy,¢)  12¢s(dy, ¢) — 12¢s(ds, ¢)

24c 24c
in all the cases for ¢ (2|c or 21 ¢, 3|c or 31 ¢). The lemma follows.

€L

0
Now we begin to prove that Arg(d; — dy; ¢) and Arg(d; — da; ¢) both satisfy Condition 3.2]

in all the cases of 5]|c.

3.1. Case2td,31c,and 5t . Wefirst treat the case when ¢ = 1,7,11,13, 17,19, 23,29 (mod 30).
Recall our notations in (3.3) and ([3.4)):
dy=dy+38¢, do=di+ 8, ay=a;+38, az3=a;+26c, B =1 (mod 5).
The argument differences Arg;(d, — dy; () for j = 1,2,3 are given by the arguments of
e ( 190ﬁcl2€2) ol — 1205(d4, C) — 1208(d1, C)) and e %
sgn (sin(Z%L)/sin(T4t))” 24c ’ 5 )

respectively. First we have

(=1 and
38c¢ =8 (mod 10)

This is easy to prove because 3¢ x 2 =6 (mod 10).
By (2.3), we have # = 1 and

—12¢s(dy, ¢) + 12¢s(dy, ¢) = —dy — ag + di + ay = —66¢ = — B’ (mod c¢). (3.20)
Moreover, we have —12¢s(dy, ¢) + 12¢s(dy, ¢) = 0 (mod 6) and
—12¢s(dy, ¢) + 12¢s(dy, ) =2 (%) — (4)) =2 ((4)(%) — (L) (4)) =0 (mod ).
Here we have used (%) =1for j =1,4 and d; = d; (mod ¢) for all j. Then,
— 12¢s(dy, ¢) + 12¢s(dy, ¢) = 0 (mod 24). (3.21)

Combining (3.20) and (3.21)), since ¢’ is odd, we can divide both the denominator and
numerator in P, by 24¢’. We obtain

or { =2. (3.19)

sgn (sm(”““e)/sm(m;e)) = —1 whenever {

Arg,(dy — dg; 0) = g

Now we have Table In the row of Arg,(d; — dy;1), we see +% because the sign

difference sgn (sin(“““e)/sm(”%lé)) = —1 when 38¢ = 8 (mod 10). The Arg,(d; — dy;2)

contains the term —|— because 3¢ x 2 =6 (mod 10). The upper half of the table is for the
case { =1 and the lower half is for ¢ = 2.
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¢ (mod 30) 1 [ 7 [11] 13 [17] 19 23 29
3 1| 3|1 2 3 4 2 4
38¢ (mod 10) 3133 3
—96¢”? (mod 10) 1|7 |1 8 7 4 7 4

1 3 1 2 1 3 6 1 3 1 6 1

Argy (dy — dy; 1) T | G| 0 | “1oTz| G0 w0 tz| i0T2| 102
Argy(di = dis 1) s s | 5| 5 | 3| 3 : 5
RS T N I I I A O I O B
Total Arg(d1 — d4; ) —% % —% % % % % %
36¢ (mod 10) 3 13| 3 8 3 8 8 8
—188¢% = 2¢' (mod 5) 2 4 2 1 4 3 1 3

. . I 3 3 3 1 3

Arg(dy = ds2) 5+ % -5 | 5 [~%| —16 || 1 ~1 1
Argy(dy = di;2) s s | 5| 5 | 5| 3 : 5
Argy(dy = di;2) s s |5 5 | 5| 3 5 ;
Total Arg(dy — dy;2) : w5l 3 - = > —+ 1

TABLE 3.1. Table for Arg(dy — dy;0); 21¢,31¢, 51c.

For Arg;(d; — dy; (), recall azdy = 1 (mod c). The argument differences Arg;(d, — da; ()
for j = 1,2, 3 are given by

( 3B6/2€2) . (_
sgn (sm(”%f)/ sm(’r‘?e))

respectively. Since 28¢'¢ = 2¢ (mod 10), we always have

12¢s(dy, ¢) — 12¢s(dy, ¢) . 48
24c ’ 5 )

sgn (sin(72)/sin(72)) =1 and  sgn (sin(#2)/sin(22)) = —1. (3.22)
Moreover, from (2.3) we have

12¢s(dg, ¢) — 12¢s(dy, ¢) = dy + a3 — di — ag = 35¢ (mod c¢), (3.23)

12¢s(ds, ¢) — 12¢s(dy, ¢) = =2 (— (%) — (4)) =4 (mod 8), (3.24)

12¢s(dy, ¢) — 12¢s(dy,¢) =0 (mod 6), and (3.25)

12¢s(dy, ¢) — 12¢s(dy, ¢) = 12 (mod 24). (3.26)

Combining (3.23]) and (3.26)), we divide by ¢’ and determine the unique value modulo 120:
—(60s(dg, ¢) — 60s(dy, c)) — 36 (mod 5) and 12 (mod 24).

This gives the contribution of the argument difference from P,. Now we can make Table [3.2]

Combining Table and Table , we see that Arg(dy, — dy; ¢) and Arg(d; — do; () for
¢ = 1,2 satisfy the styles in Condition . This finishes the proof when 2 { ¢, 3 1 ¢ and
51c.

3.2. Case 21, 3|c, and 51 ¢’. These are the cases when ¢ = 3,9,21,27 (mod 30). For

Arg,(dy — dy;0) we use (3.19). For Arg,(d; — d4;¢), we need the congruence (3.12). By
(2.3)), we have

12¢s(dy, ¢) — 12¢s(dy, ¢) = dy+ dagzey — da

congruent to

—digzey = 36 (1 — dagzey - digzey) (mod 3¢). (3.27)
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¢ (mod 30) 1) 7 |11 13 | 17| 19 | 23 | 29
I6] 113 |12 |3 ]| 4 2 4
—3¢ (mod 5) 204 121 4] 3 1 3
R o di D) T 2 [ L[ L2 T[T ]¢
Argy(di = dsi1) 55| 4 |16 | 0| 10 | "0 | T30 | 1o
Argydy v dy1) |42 (88 2] 1|8 |1
Total Arg(di —»dy;1) |+ 3 |51 5 | 2 |—51 5 |-+
—3c x 4 (mod 5) 301 |3 4 1 2 4 2
Argy(dr = d3;2) - 5 =5 |5 | ~i0 |10 | 10 |i0 | "1 | 0 | "0
Argy(di = d3;2) 55| 35 |6 | 90| 10 | "0 | T30 | 10
Argg(dy — d»;2) 5| s |55 |5 |5 |5 |3
Total Arg(dy —dy2) |0 2 |0 | =2 2] 0 |-2] 0
TABLE 3.2. Table for Arg(dy — do;(); 21¢,31¢,51c.
By (2.4) we also have
12¢s(dy, ¢) — 12¢s(dy, ¢) = 0 (mod 8). (3.28)
Dividing the numerator and denominator of P, by 24¢/, we observe that
- g<8<d4, C) — S(dl, C)) = —8{5}5(1 — d4{3c} . dl{3c}) = 6 (mod 5) (329)

because dj(3.; = dj53 = j (mod 5) for j = 1,4. Now we get Arg,(d; — dy; /() = g Since
Args(dy — dg;l) = %, we have Table .

¢’ (mod 30) 3 9 21 ] 27
p 2 4 1| 3
348¢ (mod 10) 8 ] 3 3
—96c? (mod 10) 8 4 1 7
Argy(di — dy; 1) —-&+t3l5-3] 5 |5
(Argg + Arg3)(d1 — d4, 1) % % % g %1
Total Arg(dy — dy; 1) : 32 |-2|1
36 (mod 10) 8 ] 3 3
—183¢? (mod 5) 1 3 9 4
Arg,(dy — dy;2) —= 15T 3
(Argy + Argy)(d — di;2): 2| 4 z | 3|
Total Arg(dy — dy;2) —L L o E:
TABLE 3.3. Table for Arg(d; — dy;0); 21 ¢, 3|c, 51 c.

Next we investigate Arg(dy, — do; ¢). For Arg,(d; — ds; (), we use (3.22)). For Arg,(d; —
da; 0), by (2.3) we have

12¢s(dy, ) — 12¢s(dy, ¢) = do + dogzey — di — digzey = B (1 — dagzey - digsey) (mod 3c¢). (3.30)
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As 15|3¢, after dividing by ¢ we have
608(d2, C) — 605(d1, C) = ﬂ(l — d2{15} . d1{15}> = 5(1 — agal) (mod 15) (331)

Since a3 = a; (mod 3), we have aga; = 1 (mod 3). We also have aza; = 3 (mod 5) by (3.4),
then aza; = 13 (mod 15) and

— (60s(dy, c¢) — 60s(dy,c)) = =30 (mod 15). (3.32)
By we have
12¢s(dy, ¢) — 12¢s(dy, ¢) = 4 (mod 8). (3.33)

The congruences (3.32)) and (3.33) determine a unique value modulo 120.

¢ (mod 30) 319 [21] 27
B 2 4 |11 3
-3¢ (mod 5) 1 3 12| 4
Arg,(dy — da;1) 2 Tz
Argy(dy — dy; 1) —% —% % 13—0
Argg(dy — dy; 1) 3 s 2
Total Arg(d; — do; 1) % _% % %
—12¢ (mod 5) 4 2 1 3] 1
Arg, (dy — da;2) T LTL-2Z
Mt )|~ || | %
Args(dy — dy;2) 3|14 2
Total Arg(dy — dg;2) | =2 ] 0 | 0| 2
TABLE 3.4. Table for Arg(d; — da;€); 21 ¢, 3|c, 51c.

Combining Table [3.3| and Table [3.4] we finish the proof in the case 21 ¢, 3|¢ and 51 .

3.3. Case 2|, 31, and 51 . These are the cases ¢ = 2, 4,8, 14, 16, 22, 26,28 (mod 30).
For Arg,(d; — dg; ¢) we still use (3.19). By (2.3), # = 1 and we still have

— (12¢s(dy, ¢) — 12¢s(dy, ¢)) = —(dy + ay — dy — a1) = —68¢ = —5c (mod ¢),  (3.34)

and 12¢s(d,c) = 0 (mod 6). Define the integer A > 1 by 2*||c. To determine the value
modulo 24¢, we need to determine it modulo 8 x 2*. By (2.5 we have

12¢s(dy, ¢) — 12¢s(dy, c) = dy — dy + (2 + 3¢ + 1)(dagsxory — digsxary)
+2c (d4{gx2A}(i) - d1{8><2>‘}(d_cl>) (mod 8 x 2%)
=36¢ (1 — (& + 3¢+ 1)dysxory - digsxary)
+ 2¢ (d4{8x2x}(i) - d1{8x2)‘}(d_cl>> (mod 8 x 2%).

(3.35)

We claim that
12¢s(dy, ¢) — 12¢s(dy, ¢) = 0 (mod 8 x 2). (3.36)
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To see this, since 2*||¢ and ¢/|(12¢s(dy, ¢) — 12¢s(dy, ¢)) by (3.34), we divide (3.37)) by ¢ and
obtain

60 (s(ds, ) — s(ch, ) = 35 (1= (¢ + 3+ 1adr) +2 (du(2) - dl(d£)>
= 38¢ (38d; — 1) (¢ —1) +2 <d4(i) —di(7) ) (mod 8).

Define val:= 36¢ (38d; — 1) (¢ — 1) (mod 8) as the first part of the congruence above. Note
that both d; and ¢ — 1 are odd. We have Table [3.5] for val.

¢ (mod 5) 1 2 3 4
3 1 3 p 4
358¢ 3 6c 9¢ 12¢
38d, — 1 (mod 2) |3dy —1|6d, —1|9d; —1|12d; —1
Me, di =1 (mod 4)| 4 1 0 0
2||e, dy = 3 (mod 4) 0 4 4 0
4|c; 0 0 0 0

TABLE 3.5. Table of val:= 35¢ (36d; — 1) (¢'—1) (mod 8); 2|¢, no requirement
for (¢,3), 51c.

For the second part we only need to determine d4(é) — dl(i) (mod 4). When 4|c, we get
(2) = (%) = 1. By quadratic reciprocity,

() —d() =d () (22) - 2) (22))

= (&) (<—1>(d4 NI (- 1)”““5**”/4) =0 (mod 4

d

where the last equality follows sinc
row in Table 3.5
When 2||¢, recall that dy = d; + 3¢, from which

i) = i) = (2) (=D VE D, = (2)(-) @G a,) (mod 4) (3.37)

1

When ¢ = 2 (mlod 8), CI/QT*I is even and (3.37) becomes; (f?—ﬁdll — (%)dl (Snlod 4); when
¢ =6 (mod 8), c/;—l is odd and ([3.37) becomes (i)(—l) E (%)(—1)1Td1 (mod 4).
Since ¢ = 5¢ = ¢ (mod 8), we can use dy = dy + 35¢ to determine dy (mod 8) and get
Table 3.6

(3.37) \y| ¢ =2 (mod 8) | ¢ =6 (mod &)
d (mod8) |1 35 7 |1 35 7
F=1 (202 0 (202 0
g =2 2 2 2 2 2 2 2 2
g=3 0 20 2 0 20 2
g=4 000 0 0 00 0

TABLE 3.6. Table for (3.37); 2|¢, no requirement for (c,3), 51 c.
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Combining Table and Table [3.6] we prove (3.36)). Recall (2.2) and (3.34), we divide

both the denominator and numerator in P, by 24¢’ and get Arg,(d; — dy;l) = § Since
Argy(dy — dy; 0) = %, we have Table .

& (mod 30) 2 [ 4 [ 8 | 141622 26 28

Ié] 3 4 2 4 1 3 1 2

38¢ (mod 10) 8 | 8| 8| 8| 8| s8] s8] s

—98¢” (mod 10) o | 48|46 |2|6]sSs
Argy(di — di; 1) ~i6| 10| 1 | 10| 1 | "] 0 | 0

(Argy + Argy)(di — dg;1): 2| 4 2 : 2 : 2 : :
Total Arg(d; — dy; 1) sl 2l 22135 1-=13
—183c? = 2¢ (mod 5) 4 3 1 3 2 4 2 1
Arg,(d — di;2) | 0 |7i0| W | W] 0 | "0 10

b Arg) - ai2e 2| 2| 2| || 2| E ]
Total Arg(d, — da;2) += | 2 |1-%l 3 sl 3 |-%
TABLE 3.7. Table for Arg(d; — dy;2); 2|c, 31¢, 51c.

Next we deal with Arg(d; — ds; ). For Arg,(d; — da; ), we still use (3.22). By (2.3),
— (12¢s(da, ¢) — 12¢s(dy, ¢)) = —(dy + a3 — dy — ay) = =38 =28 (mod ¢).  (3.38)

This congruence shows that 12cs(dy, ¢) — 12¢s(dy, ¢) is divisible by ¢’. Denote X by 2*||c. We
claim that
— (12¢s(dy, ¢) — 12¢s(dy, ¢)) = 4 x 2* (mod 8 x 2%). (3.39)

To prove (3.39), we apply (2.5 to get
12¢s(dy, ¢) — 12¢s(dy, ¢) = B (1 —(* +3c+ 1)dygsxory - digsxory)

-+ 2c (dQ{SXQA}(é) — d1{8><2>\}(d_cl>) (mOd 8 x 2)\)

(3.40)

Then as in (3.35]), we have
605(da, ) — 60s(d1, ¢) = B (Bdy — 1)(¢' — 1) + 2 (@(é) . dl(d—i)) (mod 8).  (3.41)

See Table for the first term val:= B¢’ (Bd; — 1) (¢ — 1) (mod 8) and note that d; and
¢’ — 1 are both odd.

¢ (mod 5) 1 2 3 4

3 1 3 2 4

B d 3 2c 4c

Bdy — 1 dy—1|3dy—1|2d, —1]4d, —1
2llc, dy =1 (mod 4)| 0 4 4 0
2||e, di = 3 (mod 4) 4 0 4 0
1l 0 0 0 0
/

TABLE 3.8. Table for val..= ¢’ (Bd; — 1) (
for (¢,3), 51 c.

—1) (mod 8); 2|¢, no requirement
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For the second term 2 (dg(é) - dl(ﬁ)) (mod 8), we argue as above using the quadratic

reciprocity ([2.6) and omit the details. Combining (2.2)), (3.38) and (3.39)), we have
—(12¢s(dy, ¢) — 12¢s(dy, ¢)) = 12 x 2* (mod 24 x 2%).

After dividing ¢, —60s(dz, ¢) + 60s(dy, ¢) (mod 120) is uniquely determined by 25 (mod 5)
and 12 (mod 24). Hence

1,7,3,9
Arg,(dy — dy; 0) = = 1’0’ , for 8 =1,2 3,4, respectively,
and we get Table |3.9]

¢ (mod 30) 2 4 8 14 116 | 22 | 26| 28

153 3 4 2 4 1 3 1 2

28¢ (mod 10) o 22 2]2]2 2|2
—36c? =2 (mod 5) | 4 3 1 31214 121
Arg(di = ds1) [ 5 [ 5 | 5| 5 [5] 35 |3] s
Argy(di = do;1) | 5 | =16 | ~16 |~ |16 | 6 | 10| "io
N AR RN N
Total Arg(dy —dy;1) | 3 |—5 | 3 |-l 5 |5 3
—128¢* =3¢ (mod 5) [ 1 2 4] 2 (3] 1 3] 4
Argi(di = d5i2) [ =5 |~ | 16 |~ |16 | 10|10 10
Argy(di = d%2) | 55 |~ | 16| 16 |10 | 16 |0 | 10
Mo di2) | 23| 33|
Total Arg(dy — dy;2) | 2 0 |[-2] 0[]0 2 0] -2

TABLE 3.9. Table for Arg(d; — dq;{); 2|c, 31 ¢, 51 c.

Combining Table and Table [3.9] we confirm that Condition [3.2] is satisfied in these
cases.

3.4. Case 2|c, 3|c, and 5 t . These are the cases ¢ = 6,12,18,24 (mod 30). For
Arg,(dy — dg; 0) we use (3.19). For Arg,(dy — dy; ), by (2.3) we have

— (12¢s(dy, ¢) — 12¢s(dy, ¢)) = =35 (1 — dugzey - digsey) (mod 3c). (3.42)

The proof of in the former subsection still works for 3|c. Then —(12cs(dy,c) —
12¢s(dy, ¢)) is a multiple of 24¢. After dividing both the denominator and numerator in
P, and recalling dj3.) = a; = j (mod 5) for j = 1,4, we get Argy(dy — dy; ) = e(g). This
gives Table [3.10]

Then we check Arg(d; — da; £). For Arg,(di — da; 0), we use (3.22). For Arg,(d; — da; 0),

by (2.3]) we have
— (12¢s(da, ¢) — 12¢s(dy, ¢)) = =B (1 — dagseydiqzer) (mod 3c). (3.43)

Since 3|c, daqsey = ag (mod 15) and di(3 = a1 (mod 15). After dividing by ¢’ we have
—(60s(dz, c) — 60s(dy,c)) = —p(1 — azay) (mod 15).
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¢ (mod 30) 6 | 12 | 18 | 24

s 1|3 ]2 |4

36 (mod 10) 8 8 8 8

—98¢? (mod 10) 6 | 2| 8 | 4
Argl(dl — d4, ]_) % —13—0 % —%

(Argy + Argy)(dy — dy1): 22| 3 | & | 1] 2

Total Arg(dy — dy; 1) -2 3 13

—183c? = 2¢ (mod 5) 2 | 4 1 3

Arg,(dy — dy32) —1—10 13—0 —% %

(Argy + Argy)(dy — dg;2) 22| 2 | 4 ) L} 2

Total Arg(dy — dy;2) 1L |-+ 3
TABLE 3.10. Table for Arg(d; — dy; 0); 2|e, 3|e, 51 c.

We have a3 = a; + 26¢ and aga; = 13 (mod 15), so

— (60s(da, ) — 60s(dy,c)) = =30 (mod 15).

Denote A by 2*||¢, then (3.39)) still holds since

— (60s(ds, ¢) — 60s(dy,¢)) = 4 (mod 8).

By (3.44) and (3.45]), we obtain

1,7,3,9
Arg,y(dy — dy; 0) = 10

This gives Table [3.11]

for f =1,2,3,4, respectively.

d (mod 30) 6 | 12 18 24
B 131 2| 4
—38c? =2 (mod 5) | 2 | 4 1 3
Arg,(di — do; 1) I EERE
Argy(dy — d; 1) 5l = -5 -5
Argy(dy — dy; 1) % % % %
Total Arg(d; — do; 1) % % % _13_0
—128¢? =3¢ (mod 5) | 3 | 1 4 2
Arg, (di — d;2) %0 —13—0 % —%
Argy(dy = d;2) |+ ] & -3 &
Args(dy — d2;2) % % % %
Total Arg(d; — dy;2) | 0 % _é 0
TABLE 3.11. Table for Arg(d; — da;¥¢); 2|c, 3|c, 51 c.

17

(3.44)

(3.45)

Comparing Table |3.10] and Table |3.11}, we have proved that Condition is satisfied in
these cases.
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We have finished the proof of Proposition by proving that the four points P(d) satisfy
Condition when 5[|c. The next subsection is to prove Proposition in the case 25|c,
which is different from the former ones.

3.5. Case 5|c. We still denote ¢ = ¢/5 and V(r,c) :== {d (mod ¢)* : d = r (mod ¢)}
for r (mod ¢)*. Now |V (r,c)| = 5 and since (d + ¢,¢) = 1 when (d,c) = 1, we can write
V(r,e) ={d,d+,d+2d,d+3c,d+4c} for 1 <d < and d =r (mod ).

We claim that Proposition |3.1]is still true:

e _3cal?

12¢s(d 4d
> ( By )6 (— C;i ’C)) e (—) =0, (3.46)
deV (r,c) SIH(T) ¢ ¢

but this time we have five summands. We prove (3.46)) by showing that there are only two
possible configurations for the summands:

/=1, points for V(9,125) /=2, points for V(11,100)

59

i.e. all at the outer circle (radius csc(Z)) or all at the inner circle (radius csc(%)) and equally

distributed. Asin (3.5)), we still denote the factors in by P, P, and P3; and investigate
the argument differences contributed from each term.

For any d € V (r,c), we take a (mod c¢) such that ad = 1 (mod ¢). We denote d, = d + ¢
and denote a, by a.d, =1 (mod ¢). Then we can pick a, = a — ¢ when d = 1,4 (mod 5)
and pick a, = a+ ¢ when d = 2,3 (mod 5).

Note that Py(d) = (—1)°*/sin(*%) has period ¢/, hence Arg,(d — d,; () = 0 always. In
the following two cases, we prove

Arg(d — d,;{) = —% for every d € V(r,c) (3.47)

5

when ¢ = 1. The other case ¢ = 2 only affects P, (radii for those five points) and results in
the same conclusion. This proves (3.46) when 25|c.

3.5.1. cis odd. When d = 1,4 (mod 5) and 31 ¢, (2.2)), (2.3) and (2.4) imply that
12¢s(d., ¢) — 12¢s(d, ¢) = 0 (mod 24c), (3.48)
hence Arg,(d — d,;0) = 0 always. As Args(d — di;0) = % for any d € V(r,c), we have

proved (3.46]) in this case.
When 3|c and d = 1,4 (mod 5), (2.3) implies

— (12¢s(ds, ¢) — 12¢s(d, ¢)) = —c'(1 — dig3ey - dzey) (mod 3c). (3.49)
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Since 15|c, after dividing by ¢ we have
— (60s(d,, c) — 60s(d,c)) = a® — 1 (mod 15). (3.50)

Note that a = 1,4 (mod 5) and a® = 1 (mod 15), hence we have —(12¢s(d,, ¢) —12¢s(d, ¢)) =
0 (mod 24c¢) and conclude ([3.47]).
When d = 2,3 (mod 5) and 3 { ¢, recall d, = d+¢ and a1 = a+¢ with a+d = 0 (mod 5).

By 22), [3) and [4), we have
—(12¢s(dy, ¢) — 12¢s(d, ¢)) = —2¢ (mod ¢) and =0 (mod 24).

Then Argy(d — d.; ) = 2. Since Args(d — d,; () = 2, we have proved in this case.

When d = 2,3 (mod 5) and 3|c, we still get , while this time a = 3,2 (mod 5),
a*—1 =3 (mod 15), and hence a? — 1 = 48 (mod 120). We have Arg,(d — d.; () = 2. Since
Argg(d — d,; () = 2, we have proved in this case.

3.5.2. c is even. In this case, denote A by 2*||c. Then by (2.5]) we have
12¢s(dy, ¢) — 12¢s(d, ) = ¢ (1 = (¢ + 3¢+ 1)dygxory - digxary)
+2¢ ((d—i)dl{gxm . (g)d{gxm) (mod 8 x 2V).
Since /|(12¢s(d,, c) — 12¢s(d, ¢)) by (3.48)) and (3.49), dividing the above congruence by ¢

we have
—60(s(dy, ) — 8(d, ¢)) = —¢(d — 1)(d — 1) — 2 <(£)d* - (g)d) (mod 8).  (3.51)
For the first term,

0 (mod 8) if 2|lc, d =1 (mod 4);
—d(d—-1)(d —1)=<] 4 (mod8) if2|lc, d=3 (mod 4); (3.52)
0 (mod 8) if 4c.

When A is even, (%) = (%) = 1; when A > 3 is odd, (dg—*) = (2). In either case “1 and &1

2
have the same parity. Hence when 4|c, we have

(7)dx — (5)d =0 (mod 4).
When 2||¢, we have Table for val:= ()d, — (§)d (mod 4) using quadratic reciprocity.

ds
d (mod 8) 113]5|7
d, (mod 8) when ¢ =2 (mod 8) |3 |5|7]|1
val. 012(0]2
d, (mod 8) when ¢ =6 (mod 8) | 7|1[3]|5
val. 012(0]2
TABLE 3.12. Table for val:= ()d. — (§)d (mod 4); 2|c, no requirement for

(3,¢), 5.

Combining (3.52)) and Table for 2}||c we get
12¢s(d,, ¢) — 12¢s(d, ¢) = 0 (mod 8 x 24). (3.53)

The argument for the cases d = 1,4 (mod 5) or d = 2,3 (mod 5), or the cases 3 { ¢ or 3|c,
still works as the former case.
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Proof of Proposition 3.1 This is proved by Condition [3.2| and ({3.47]). O
This finishes the proof of (5-4) in Theorem [1.3]

4. PROOF OF (7-5,1) OoF THEOREM 1.3
Recall (2.7 in the case p = T:

(_1)606(_30’a€2) e (7n+5)d
(00T ) = Y L) e (290 gy
d (mod ¢)* 7
ad=1 (mod c¢)

We only need to consider £ = 1,2, 3 because A(ﬁ;n) = A(l - ﬁ; n).
As in the previous section, we define ¢’ := ¢/7. For an integer r with (r,¢) = 1, we define
V(r,c) ={d (mod ¢)*: d=r (mod ¢)}.
For example, V(1,42) = {1,13,19,25,31,37} and V(4,35) = {4,9,19,24,29,34}. Then
\V(r,c)] =61 74, |V(r,c)| =7 if 49|c, and (Z/cZ)* is the disjoint union
z/cz)y = |J V(o).
r (mod ¢/)*

We claim the following proposition.

Proposition 4.1. For { =1,2,3, when 7|c, £-£# 1 (mod 7) and £ - { # —1 (mod 7), the

sum on d € V(r,c) for all r (mod ')* is zero:

e > () a0y »”

sin( %~
deV(r,c) (

7

If Proposition [4.1]is true, then

(0) — o(—L1y(_1)te nry _
S (0,0 + 5, ¢, u7) = e(—5)(—1) Z ST’C€<C’) 0

r (mod ¢)’

for all n € Z, ¢ = 1,2,3 and we have proved (7-5,1) of Theorem
As in (3.5)), we label the terms in (4.2)) as

) ((225600) () Ly .

sin(%‘w) 24c c

We first deal with the case 71 ¢’. We denote the argument differences as in (3.6]), but in this
case u,v € {1,2,--- ,6} and ¢ € {1,2,3}, where

dy = ay =u (mod 7), aggrdy =1 (mod ¢), dyyr = dy + B and a, 1 = a, + B, (4.4)
Note that a,d, may not be 1 (mod ¢). Let 1 < 3 <6 such that ¢ =1 (mod 7).
As in Condition [3.2] we have the following styles for the six summands followed by the

explanation in Condition
e/ =1,2, 3, first style.
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/=1, points for V(1,14) /=2, points for V(4,35) /=3, points for V(3,28)

e/ =1,2,3, reversed style from the above.
/=1, points for V(2,21) /=2, points for V(1,56) /=3, points for V(5,42)

Here we explain these styles. Each graph above includes three circles centered at the origin
with radii csc(Z), csc(2) and csc(2Z), respectively. The six points in each graph above mark
P(d) for d € V(r,c) on these three circles. It is not hard to prove that whenever the six
points satisfy the following condition on their argument differences, they sum to zero. This
proves Proposition by using the equation

3T s 2w
cos(7) _ coslg) | cos(F) =0, where ! ! ! are the radii.
sin(%) Sln(27”) sin(2) ’ sin(Z)” sin(3)’ sin(3F)

Condition 4.2. We have the following siz styles for these siz points when Tlc, £ - { #
1 (mod 7) and £ -£ # —1 (mod 7).

o/ =1: the arguments (as a proportion of 2m) going di — dy — d3 — dy — ds —

dg — dy are — 1‘1, 7, —7, 3, 154, and 3, respectively, or the reversed style.
d1 — d2 — dg — d4 — d5 — dﬁ — d1
— 5 2 T 2 5 3
Ci = 2, 4 (mod 7) _5ﬁ —2? —17 —27 —5ﬁ ?3
¢ =3,5 (mod 7) = 2 z Z kS —3
o [ =2, second graph style:
d1 — d2 — dg — d4 — d5 — d6 — dl
=Solwdn| § g f L g T
'=1,2 (mod 7) —i —i —7 — —i —7
o (= 3, third graph style:
d1 — d2 — dg — d4 — d5 — dﬁ — d1
— 3 5 3 5 3 2
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Proof of Proposition when 7+ . This is proved by Condition . O

Remark. Note that (7-5,1) of Theorem [1.3|is for the case ¢'¢ # £1 (mod 7), so Condition
does not include all the cases of ¢ (mod 7). We will highlight these exceptional cases among
the tables in this section by a row “¢¢ = 41 (mod 7)?”. The corresponding entry is:

blank, if ¢¢ # £1 (mod 7);
“+7 if =1 (mod 7);
“—7 it dl=—-1 (mod 7).
We will explain these exceptional styles ¢’/ = £1 (mod 7) in the next section for (7-5,2).

In the following subsections, we show Arg(d; — do;{), Arg(dy — ds;{), and Arg(ds —
dy; 0) in all the cases ¢ (mod 42). These argument differences are sufficient to check Condi-
tion 4.2 because

Arg(dy — dy; 0) = Arg(ds — dg; 0) and Arg(ds — ds; 0) = Arg(dy — ds; (),

where the proof is the same as the proof of Lemma . When 71 ¢, we prove that Arg(d; —
do; 0), Arg(dy — ds;0), and Arg(ds — dy; () satisfy Condition in §4.11§4.4 When 49]c,
we prove Proposition in §4.5

4.1. Case 21¢,31¢,71¢. We begin by dealing with Arg(d; — dy; ). First we have
98 [ 40 sgn(sin(T2)/ sin(T%)) =1,
Argy(dy = da; £) = = 14 +1 sgn(sm(m“g)/sm(m?l)) = —1.

When ¢ = 1, the sign changes when 35¢ = 10 (mod 14). When ¢ = 2, the sign always
changes. When ¢ = 3, the sign changes when 95¢ =9 (mod 14) but does not change when
96¢ =2 (mod 14).
Since 12¢s(d, ¢) = 0 (mod 6), we have
—12¢s(da, ¢) + 12¢s(dy, ¢) = —dy — aq + dy + a; = —45¢ (mod ¢),

—12¢s(da, ¢) + 12¢s(dy, ¢) = 2(2) (%) — 2(2)(4) =0 (mod ),

C

(4.5)

from which
24{7} 45 5
7 T
Moreover, Args(dy — do;l) = 75 This gives Table Note that there are 12 choices
of ¢ so we break the table into upper (for ¢ = 1,5,11,13,17,19 (mod 7)) and lower (for
= 23,25,29,31,37,41 (mod 7)) parts.
Next we consider Arg(dy — ds; (), with dyay = dsas = 1 (mod 7). We have

3pcE { +0 if sgn(sin(7%4)/sin(*4)) = 1,

14 +1 if sgn(sm(ﬂ%g)/&n(”‘?f)) =—1.

When ¢ = 1, the sign changes when ¢’ = 8 (mod 14). When ¢ = 2, the sign remains the
same. when ¢ = 3, the sign changes when 3¢ = 3 (mod 14) but remains when 10 (mod 14)
because asl =5 (mod 7).

Since 12¢s(d, ¢) = 0 (mod 6), we have

—12¢s(ds, ¢) + 12¢s(da, ¢) = —d3z — a5 + dy + a4 = —26¢" (mod c¢),

—12¢s(ds, ¢) + 12¢s(dp, ) = 2(%) (%) — 2(2)(£) = 4 (mod ),

Argl(dg — dg;g) = — (46)
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& (mod 42) 1T [ 5 11 | 13 [ 1719

3 1| 3| 2 6 | 5 | 3

36 (mod 14) 3 3 10 10 3 3
—98¢” (mod 14) 5 1 11| 6 o | 1|1
Arg, (d, — dy; 1) |2 [<+il3+3| 5 | &
(Arg, + Argy)(dy — do; 1) | —2 | =2 | -2 i | 3|3

Total Arg(dy; — do; 1) 2l -3 2|33

dl==1 (mod 7)? + —

—18Bc* = 3¢ (mod 7) 3 1 5 4 2 1
Argi(di = di2) 5+ % | =5 | =11 | a1 | u ||
(Arg, + Arg,)(dy — da; 2) —% —% —% % % —%

Total Arg(dy — ds;2) | -2 | & | —4 2 L

A0 =41 (mod 7)7 +
98¢ (mod 14) 9 1 9 1 2 2 19 ] 9
_818¢% (mod 14) 31| 12 4 9|1
ey N RN
(Argy + Argg)(dy — d;3) | =1 | =3 | —% 7| 3|3
Total Arg(d; — do; 3) -3 1 —3 g 3 1
dl==1 (mod 7)? - -
¢ (mod 42) 23 | 25 29 31 37 | 41
3 412 1 5 | 4| 6
36 (mod 14) 10 | 10 3 3 10 | 10
—98c? (mod 14) 10 | 6 5 1 10 | 2
(Argy +Argy)(di — do;1) | 3 | =3 | —3 Pl 3|7
Total Arg(dy — do;1) | =3 | -3 | = I -5
dl = =1 (mod 7)? + -

—183c? = 3¢’ (mod 7) 6 5 3 2 8 4
Argi(di > d3i2): 5+ 5% | 35 | 4 | T | i | 1| o1
(Argy +Argy)(dy — do; 1) | 3 | =3 | —3 3 3

Total Arg(dy — d2;2) | - | =44 2 = | -2 =

dl =41 (mod 7)? - —
96¢ (mod 14) 2 2 9 9 2 2
—813c? (mod 14) 6 12 3 9 6 4
Mo iy 1| 2L
(Argy +Argy)(dy — do; 1) | 3 | =3 | —3 3 23
Total Arg(d; — do; 3) -1 -2 -3 g -1 | &

dl==1 (mod 7)?

TABLE 4.1. Table for Arg(dy — do;0); 21¢,3t¢, Tfc.
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and —84s(ds, ¢)+84s(dy, ¢) (mod 168) is uniquely determined by 12 (mod 24) and —2 (mod 7).

So
1,3,5,9,11,13

14

Moreover, Args(dy — d3;l) = % This gives Table , which is broken into upper (for
d=1,5,11,13,17,19 (mod 7)) and lower (for ¢ = 23,25,29,31,37,41 (mod 7)) parts.

Then we investigate Arg(ds — dy; ) with dsas = dgas =1 (mod 7). We have
98c2¢? { +0 if sgn(sin(T2t)/ sin(T%t)) =1,
:tl

ArgQ(dg — dg, f)

when g =1,3,5,2,4,6, resp.

Arg,(ds — dy;0) = (4.7)

14 if Sgn(s1n(“a2€)/sm(”‘;5€)) =—1.
When ¢ = 1, the sign changes if 35¢’ = 10 (mod 14). When ¢ = 2, the sign always changes.
When ¢ = 3, the sign changes if 95¢ = 2 (mod 14) but remains if 95¢ =9 (mod 14).

We have 12¢s(d, ¢) = 0 (mod 6),

—12¢s(dy, ¢) + 12¢s(ds, ¢) = 28¢" (mod ¢),

and
—12¢s(dy, ¢) + 12¢s(ds, ) = 2(%) (%) — 2(£) (%) = 4 (mod ).
So —84s(dy, ¢) +84s(ds, ¢) (mod 168) is uniquely determined by 12 (mod 24) and 23 (mod 7)

and
1,3,5,9,11,13

14
Moreover, Argy(ds — dy; 0) = 57 This gives Table

Now we have finished the proof of Condition 4.2 when 2t ¢, 3t ¢ and 7t ¢ by comparing
Table [£.1], Table 4.2 and Table [4.3]

4.2. Case 2 1 ,3|¢,71 . In this case ¢ = 3,9,15,27,33,39 (mod 42). First we check
Arg(d; — do;0) with dya; = dsag = 1 (mod 7). For Arg,(dy — ds;¢), we use (4.5). For
Arg,, we have 0 = 3, 6¢s(d, ¢) € Z, and

—12¢s(ds, ¢) + 12¢s(dy, ¢) = —da — dogzey + di + digsey = —B¢ + B digzey - dagsey (mod 3c).

Arg,(ds — dy; 0) = when 8 =6,4,2,5,3,1, resp.

Here d3q is the inverse of d; (mod 3c) and we have used (3.12). Hence we confirm that
—12¢s(dy, ¢) + 12¢s(dy, ¢) is a multiple of ¢. After dividing the above congruence by ¢, we

obtain a congruence modulo 21 while dj(3.; = = a5 (mod 21) due to 21|c. Hence

—84s(dy, ¢) + 84s(dy, ¢) = = + Baras = f(araq — 1) (mod 21).
We have ajay =4 (mod 21) by aga; =1 (mod 3) and ajay = 4 (mod 7). Hence
—28s(ds, ¢) + 28s(dy,¢) = B (mod 7).
Due to (2) = 1, we also have

—12¢s(dy, ¢) + 12¢s(da, ) = 2(L)(4) — 2(2)(£) =0 (mod ).

Since 3¢’ is odd, we still have —28s(ds, ¢) + 28s(dy,¢) = 0 (mod 8). Now we get Arg,(d; —

do; l) = @ = g and (Arg, + Argy)(dy — da; () = —g. This gives Table .
Next we investigate Arg(dy — ds; ¢) with deay = dsas = 1 (mod 7). For Arg, we use (4.6)).

For Arg,, we have 6 = 3, 6¢s(d, ¢) € Z, and
—12¢s(ds, ¢) + 12¢s(ds, ¢) = —d3 — dsgaey + do + dogzey = —B¢ + B dogaey - dagsey (mod 3c).
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& (mod 42) T [ 5 ] 11 | 13 [17]1D9
B 1 3 2 6 5 3
pc’ (mod 14) 1 1 8 8 1 1
—3B¢? (mod 14) 11|13 ] 2 10 | 5 |13
Arg, (dy — dg; 1) S| Bl1&+i1E3+3| 3] B
(Argy + Argy)(dy — ds; 1) | 37 | & 1 7! | u
Total Arg(dy — ds; 1) 3 2 —2 g 2 | 2
dl==1 (mod 7)? + —
—68c% = ¢ (mod 7) 1 5 4 6 3 5
Argy(dr—ds2):5 | 2 [ F] ¢ | F | 3]3
(Argy +Arg;)(da — d3;2) | 17 | i v g =
Total Arg(dy — d3;2) —ﬁ ﬁ —% 1—14 % ﬁ
A0 =41 (mod 7)7 + —
36¢ (mod 14) 313 ] 10 ] 10 3] 3
—27B¢? (mod 14) 1|5 | 4 6 | 3| 5
e A
(Argy + Argg)(dy — d3;3) | 37 | o 1 7 | u
Total Arg(dy — ds;3) | & & -2 | =2 <
dl =41 (mod 7)7? + +
¢ (mod 42) 23 | 25 | 29 | 8L | 37 | 41
3 42| 1 5 | 4 | 6
3¢ (mod 14) s | s | 1 1 |8 | 8
—34c¢? (mod 14) 8 2 11 5) 8 10
Arg,(dy — d3; 1) 5 |- = = | &
(Argy + Argg)(dy — ds; 1) | 37 | 53 i 7 u |
Total Arg(d; — do; 1) —% —% % % —% %
dl =41 (mod 7)7? + —
—68c¢? = ¢ (mod 7) 2 | 4 1 3 2 | 6
e E-A B B T B T B R B
(Argy + Argy)(dy — d3;2) | 5 | 13 T 1 | u
Total Arg(dy — d2;2) | =35 | -2 | —5 Z -5l o
dl =41 (mod 7)7 + —
38¢ (mod 14) 10 | 10 3 3 10 | 10
—273c? (mod 14) 2 4 1 3 2 6
R R I R A B
(Arg, + Args)(d2 — d3; 3) % ﬁ % % 1% 13_4
Total Arg(d; — dy;3) —13—4 % % —% —% —%

dl =41 (mod 7)?

TABLE 4.2. Table for Arg(dy — ds;0); 21¢,3t¢, Ttc.

25
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& (mod 42) T [ 5 ] 11 | 13 [17]1D9
3 1| 3| 2 6 | 5 | 3
36¢ (mod 14) 3 03] 10| 10|33

98¢ (mod 14) 9 | 3| 8 12 |13 3
Arg, (ds — dy; 1) R IR

(Arg, +Argg)(ds > d; ) | 7f | 17 | & | © | 1| 1

Total Arg(ds — dy; 1) 2 1 ~1 -2 111

dl==1 (mod 7)? + —

186 = 4¢’ (mod 7) 4 6 2 3 5 6
Argi(ds = di2) sy +% | 37 | 5 | —i1 | T | 1|
(Arg, + Argy)(ds — dg;2) | 2 | £ = Z 2| B

Total Arg(ds — dy;2) -2 2 —4 2 g 2

A0 =41 (mod 7)7 + —

98¢ (mod 14) 9 1 9 1 2 2 19 ] 9
813c? (mod 14) 11 | 13 2 10 ) 13
Arg,(ds — dy; 3) T B -3 < | B

(Argy + Args)(ds — du;3) | 34 | 13 1 v | 11
Total Arg(ds — dy; 3) 8 | -1 g -3 | -2 -1
dl =41 (mod 7)7? + +

¢ (mod 42) 23 | 25 | 29 | 8L | 37 | 41

3 42| 1 5 | 4 | 6

36 (mod 14) 10 | 10 3 3 10 | 10

98¢ (mod 14) 418 9 13 | 4 |12
Arg,(ds — dy; 1) =21 &Z 1 -3 L -2 5

(Argo+Argg)(ds > di; ) | 17 | 17 | 1 | © | u | 1
Total Arg(ds — dg;1) | =1 | —1% 2 2 -1 | -2

dl =41 (mod 7)7? + —

184 = 4¢ (mod 7) 1 2 4 5 1 3
Arg,(ds — dy;2) : %+37C -1 -2 & 2 =23

Total Arg(ds — dy;2) 2| -2| -2 3 -2\ 2

dl =41 (mod 7)7 + —

96 (mod 14) 2 2 9 2 2
—818¢” (mod 14) 8 | 2| 1 5 | 8 | 10
Arg,(ds — dy;3) = |- & = = [ &

(Arg, +Argg)(ds = dai3) | 17 | 15 | & | 4 | u | 1
Total Arg(ds — dy; 3) : g g —3 $ | -2

dl =41 (mod 7)?

TABLE 4.3. Table for Arg(ds — dg;0); 21¢,3t¢, Ttc.

26
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& (mod 42) 379 [ 15273339
B 5 4 1 6 3 2
36¢ (mod 14) 31103 ]10] 3|10
—98¢? (mod 14) 1 |10]5 |2 116
(Argy +Argy)(dy = do; 1) | =2 | =2 | =3 | =3 | =2 | =3
Total Arg(d; — do; 1) -3l 2 1-21 & |-&
dl =41 (mod 7)? + | -

—18Bc* = 3¢ (mod 7) 2 6 3 4 1 5
Argi(dy = doi2) 5+ 5 | = | 51 | | 1| i 1
(Argy + Arg)(d 1) | 2| 4| L] | 2

Total Arg(d; — dy;2) L-21-Zl &3 |-&

d0=+1 (mod 7)7 — +
96¢ (mod 14) 9 2 9 2 9 2
—813c? (mod 14) 9 | 6 | 3 | 4 1| 12
e N R R
(Argy +Argy)(di — do;1) | =2 | =3 | =3 | =2 | =2 | -2
Total Arg(d; — do;3) 8 | 2| -2 & : | -4
dl =41 (mod 7)7? - +

TABLE 4.4. Table for Arg(dy — do;{0); 21 ¢, 3|, T1ec.

Hence we confirm that —12¢s(ds, ¢) + 12¢s(dy, ¢) is a multiple of ¢. After dividing by ¢/, we
obtain a congruence modulo 21 and
—84s(ds, c) + 84s(dy, ¢) = — B + Pasas = f(agas — 1) (mod 21).
Since aqas = 13 (mod 21) by asa; =1 (mod 3) and agas = —1 (mod 7), we have
—28s(ds, ¢) + 28s(dy, ¢) = 48 (mod 7).
By , we get

—12¢s(ds, ¢) + 12¢s(dz, ) = 2(2)(£) — 2(£)(%) = 4 (mod 8).

c 7\
Since 3¢ is odd, we still have —28s(d3, ¢) 4+ 28s(ds,¢) = 4 (mod 8). Now 45 (mod 7) and
4 (mod 8) determines a unique residue modulo 56 and then

1,3,5,9,11,13
Argy(dy — d3;l) = — ’14’ — (mod 1) when 8 =1,3,524,6.
This gives Table [4.5]

Finally we deal with Arg(ds — dy; ¢) where dsas = dsas = 1 (mod 7). For Arg, we apply
(4.7). For Arg,, we have 6 = 3, 6¢s(d, ¢) € Z, and

—12¢s(dy, ¢) + 12¢s(ds, ¢) = —dy — dugsey + ds + dsgzey = —B¢ + B dsgaey - dagsey (mod 3c).
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7 (mod 42) 379 [ 15 27 [33] 39
B ) 4 1 6 3 2
B (mod 14) 1 8 1 8 |1 ] 8
—38¢? (mod 14) 5 08 | 11|10 |13 2
(Argy +Argg)(de > ds1) | 57 | 54 | & | u | 1| 1
Total Arg(dy — ds; 1) z2 | -2 2022 -2
dl = =1 (mod 7)? + | -
—68c”? = ¢ (mod 7) 3 2 1 6 | 5| 4
NG D [T T E]7] 1
(Argy +Argg)(de > ds1) | 5 | 54 | T | w4 | 1| 1
Total Arg(dy — ds;2) Zl-2l-%| = |-
dl = =1 (mod 7)? — +
36¢ (mod 14) 31101 3 [10]3]10
—273c? (mod 14) 3| 2 1 6 | 5 | 4
M@ dis) | E LT T
(Argy +Argg)(de > ds1) | 1 | 5 | & | 4 | o | u
Total Arg(ds - d33) |- |- o |- o | o
dl =41 (mod 7)? — +

TABLE 4.5. Table for Arg(dy — do;0); 21 ¢, 3|, T1ec.

We again confirm that —12cs(dy, ¢) + 12¢s(ds, ¢) is a multiple of ¢. After dividing the above
congruence by ¢, we obtain a congruence modulo 21 and

—84s(dy, c) + 84s(dz, ¢c) = — B + Basaz = B(asaz — 1) (mod 21).
Since asas = 10 (mod 21), we get

—28s(dy, ¢) + 28s(ds, ¢) = 3 (mod 7).
We also have

—12¢s(dy, ¢) + 12¢s(d3, ) = 2(%) (%) — 2(£) (%) = 4 (mod ).
Since 3¢ is odd, we get —28s(dy, ¢) +28s(ds, ¢) = 4 (mod 8). Now 34 (mod 7) and 4 (mod 8)
determines a unique residue modulo 56 and then
1,3,5,9,11,13
Arg,(dy — d3; l) = —— ’14’ — (mod 1) when S =6,4,2,5,3,1.

This gives Table and we have finished the proof for ¢ = 3,9, 15,27, 33,39 (mod 42).

4.3. Case 2|¢,3 ¢, 7+ ¢ In this case ¢ = 2,4,8, 10, 16,20, 22, 26, 32, 34, 38,40 (mod 42).
We compute Arg(d; — da;¢) via (4.5). For Arg, we need to combine (2.3) and (2.5). We
have 12¢s(d, ¢) = 0 (mod 6) and

— 12¢s(dy, ¢) + 12¢s(dy, ¢) = —dy — aq + dy + a1 = —45¢ (mod ¢). (4.8)
Then —12¢s(ds, ¢) 4+ 12¢s(dy, ¢) is a multiple of ¢'.
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& (mod 42) 379 [15] 27 [33] 39
3 504116 |3] 2
36¢" (mod 14) 3 1103 |10 3] 10
98¢ (mod 14) 130 4912|338
Arg,(ds — dy; 1) B2 313 &
(Argy +Argy)(ds = d1) | 37 | 5 | 54 | 11 | 11| 1
Total Arg(d; — do; 1) T2 2|2 1)1
dl = =1 (mod 7)? + | -
183c¢”% = 4¢ (mod 7) 5 1 | 4] 3 |6 2
(Argy +Args)(ds > du;1) | 37 | 45 | 54 | 11 | 11| 1
Total Arg(ds — dy;2) g1 -2)-2| 2|28
dl==+1 (mod 7)7 — +
95¢ (mod 14) 91 2 |92 |9 2
818¢2 (mod 14) 5 8 [11] 10 |13] 2
Arg, (dy — da;3) Il E gl 3123
(Argy +Argy)(ds = du;1) | 37 | 5 | 5 | 11 | 1| 1
Total Arg(dy — dg;3) | 2| 2 | 2 | =2 |-1| 2
dl =41 (mod 7)? — +

TABLE 4.6. Table for Arg(ds — dy;0); 21 ¢, 3|c, Tt ec.

We claim that
— 12¢5(dy, ¢) + 12¢s(dy, ¢) = 0 (mod 8 x 2%). (4.9)
Denote A > 1 by 2*||c. We have
—12¢5(dy, ¢) + 12¢5(dy, ¢) = — dy — dogsxory (¢ + 3¢ + 1+ 2¢(£))
+ dy + digsxory (¢ + 3¢+ 14 2¢(5))
= — B + B dogseary - diggxory (P + 3¢+ 1)
+ 2¢(dy(sx22y (77) — dagsxary (7)) (mod 8 X 2Y).
After dividing ¢/, we get the value modulo 8 by Z(sy = « (mod 8):
—845(dy, ¢) + 845(dy, ¢) = = + Bdadi(c¢* + 3¢+ 1) + 6(di(F) — da(5))
= pAd(1+diB)(c + 1) = 2(di() — da(;)) (mod 8)

For the first value val:= 5¢(1+d;5)(¢’ + 1) (mod 8), we see that both S(1+d;5) and ¢ are
even, hence the result is 0,4 (mod 8). Moreover, val. is the same for ¢ and ¢ 4+ 7. Then we

have Table .7
For the other part we determine whether

di(5) —da() =0 or 2 (mod 4). (4.10)
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¢ (mod 7) 1 2 3 4 5 6
3 1 4 5 2 3 6
[o1ed d 4c 5c 2c 3 6c

Bd; + 1 di+1|4dy+1[5dy+1]2dy+1|3dy+1|6d; +1
2||le, dy =1 (mod 4) | 4 0 4 4 0 4
2lle, di = 3 (mod 4) | 0 0 0 4 4 4
4|e 0 0 0 0 0 0

TABLE 4.7. Table for val:= 8¢ (Bd; + 1) (¢ +1) (mod 8); 2|¢, no requirement
for (¢,3), 71c.

When 4|c, (4.10) is always 0 (mod 4), which proves (4.9) by combining the last row of
Table 4.7 1
When 2|jc, by (£) = (£)(—1)"z for odd z, we have

/
di—1,d1 -1 $-1 do—1

B(E) — da(£) = () ((—1) PR oy ()%

ot 21(%)612) (mod 4).

(4.11)
Since dy = dy + B/, we divide into cases for ¢ = 2,6 (mod 8), d; = 1,3,5,7 (mod 8) and
B from 1 to 6 to make Table [4.8 Note that d (mod 8) is derived by ¢ (mod 8), # and
d; (mod 8).

(4.10) | ¢ =2 (mod 8) | ¢ =6 (mod 8)
i (mod8) |1 35 7 |1 35 7
5=1 |2 02 0 202 0
g=4 0 00 0 0 00 0
B=5 2 0 2 0 2 0 2 0
g =2 2 2 2 2 2 2 2 2
5=3 1020 2 (020 2
B=6 2 2 2 2 2 2 2 2

TABLE 4.8. Table for (4.10); 2|c, no requirement for (¢, 3), 71 c.

Comparing Tableand Table , we have proved . Combining and 12¢s(d, ¢) =
0 (mod 6), we divide 24¢ to compute Argy(d; — do;l) = g Then (Arg, + Arg;)(d; —
do; l) = —g and we have Table

Next we deal with Arg(dy — d3;¢) with dyay = dsas = 1 (mod 7). For Arg, we apply
(4.6). For Arg,(dy — d3;¢) we do the similar proof as Arg,(d; — da; £). First we have

— 12¢s(ds, ¢) + 12¢s(dy, ¢) = —d3 — a5 + dy + a4 = —2" (mod c¢). (4.12)

Then —12c¢s(ds, ¢) + 12¢s(dy, ¢) is a multiple of ¢'.
We claim that

— 12¢s(ds, ¢) + 12¢5(dy, ¢) = 4 x 2* (mod 8 x 2%). (4.13)
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¢ (mod 42)
B
—33c? (mod 14)

8 10
1 9

Argl(dl — dg, 1) : % — 9612/2
(Arg, + Arg,)(dy — da; 1)
Total Arg(dy — do; 1)

d0=+1 (mod 7)7

—183c? = 3¢’ (mod 7)

AI‘g1<d1 — dg, 2) : % + 3TCI

(Arg, + Argy)(dy — da; 1)

Total Arg(d; — do;2)
dl =41 (mod 7)7

Bl o
Rl

Eles e

—813c% (mod 14)

Arg,(dy — dy;3) : —%
(Arg, + Arg,)(dy — da; 1)
Total Arg(d; — do; 3)

dl =41 (mod 7)7?

|t

i =

~jw|
= N
NI
~o

~Jlw

¢ (mod 42)
B
—94¢? (mod 14)

w
o
w
=~

W
oo
W
()

Arg,(dy — dg; 1) : % — %12/2
(AI‘g2 + Arg3)(d1 — dg, 1)
Total Arg(dy — da; 1)

dl =41 (mod 7)7

~J|ot

=l=] oo o
W

—183c? = 3¢ (mod 7)

Argl(dl — dg; 2) : % + 3701

Total Arg(d; — dy;2)
dl==1 (mod 7)?

(Arg, + Arg,)(dy — do; 1) —1

Rleg o

I

|,_. -
o

+

Rl

o

—813c? (mod 14) 10

Arg,(dy — dg;3) : —%

(Arg, + Argy)(dy — da; 1)
Total Arg(d; — do; 3)

I ST

~Nlw =

dl =41 (mod 7)?

e | 0o

~|w

[

W N

1
7
+

NI

~|o

~lw

| OO

~|w

+ =

TABLE 4.9. Table for Arg(d; — dq; {); 2|c, 31 ¢, T1c.

31
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For A\ > 1 such that 2*||c, we have
—12¢s(ds, ¢) + 12¢s(dz, ¢) = — ds — daqgxorny (¢ + 3¢+ 1+ 2c(3))
+dy + dygs iy (¢ + 3+ 14 2¢(5))
= — B¢ + B dy(sxary - doggxony (P + 3¢+ 1)
+ 2C(d2{8x2)‘}(£) - d3{8x2k}(d_cs)) (mod 8 x 2%),
After dividing ¢, since 2*||¢’ and Z(sy = = (mod 8) for odd z, we have
—84s(d, ) + 84s(dy, ¢) = = + Bdsda(c* + 3¢ + 1) + 6(da(5) — ds())
= B (1 +doB) (¢ + 1) = 2(da(F) — d3()) (mod 8)
The proof of is then the same as the proof of before, noting that in the second

part we have (22) = 1 while () = —1. This difference makes an alternation in Table
where we should change all 2 to 0 and all 0 to 2, which results in 4 x 2* (mod 8 x 2*) rather
than 0 (mod 8 x 2*) in (4.13]). We omit the details.
Combining (4.12)), (4.13) and 12¢s(d,c¢) = 0 (mod 6) we can determine Argy(dy — d3;¥)
with denominator 42 and numerator by 34 (mod 7) and 3 (mod 6), hence
Argy(dy — d3; l) = 1,3,5,9,11,13 when 8 =1,3,5,2,4,6, resp.

14
Now we have Table [£.10]
Finally we check Arg(ds — dy; ¢) with dzas = dyas = 1 (mod 7). For Arg, we apply (4.7).

Since ¢ is even, we have —33¢ = 4 (mod 14) and the sign always changes.
For Arg,(ds — dg4; ), first we have

— 12¢s(dy, ¢) + 12¢s(ds, ¢) = —dy — as + d3 + a5 = 23¢ (mod ¢). (4.14)
Then —12c¢s(dy, ¢) + 12¢s(ds, ¢) is a multiple of ¢/. We claim that
— 12¢s(dy, ¢) + 12¢s(d3, c) = 4 x 2* (mod 8 x 2%). (4.15)

The proof is the same as the proof for (4.13) and we omit the details. Combining (4.14]),
(4.15)) and (2.2)), we can determine Arg,(ds — dy; ¢) with denominator 42 and numerator by
46 (mod 7) and 3 (mod 6), hence

~1,3,5,9,11,13

Arg,(dy — d3;0) = 14 when 5 =6,4,2,5,3,1.

This gives Table [4.11]

Comparing Tables @L and we see that when 2|/, 31 ¢ and 71 ¢/, Condition
holds and we have proved Proposition 4.1|in this case.

4.4. Case 2|c,3|c,7 t . In this case ¢ = 6,12,18,24,30,36 (mod 42). We deal with

Arg(d; — dy; 0) by (4.5). For Arg, we need to combine ({2.2)) and (2.5). We have 12¢s(d, ¢) =
0 (mod 2) and

—1208(d2, C)+1208(d1, C) = —dg—dg{gc}—l—dl—l—dl{gc} = —ﬂC/—FﬁC,dg{gc}'dl{gc} (mod 30) (416)

Then —12cs(dy, ¢) + 12cs(dy, c) is a multiple of ¢/. After dividing ¢, since 3|¢’ and dj3.y =
aj— (mod 21), we get

— 845(ds, ¢) + 84s(dy, ¢) = —f + Baga; = 38 (mod 21). (4.17)
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& (mod 42) 2 1 4] 8 [10]16] 20
3 4l 2115|416
—38¢” (mod 14) 8| 24 12] 810
Argi(de 1) 5 =85 | | =& -&| & [ 5| &
(Argy + Argg)(d = dsil) | o | 47 | 11 | 11 | 1| 1
Total Arg(dy — ds; 1) 2|2 -3 2 -2 3
d0=+1 (mod 7)7 + -
—68c¢? = ¢ (mod 7) 2 | 4 1 31 2] 6
TR AR EAR AR
(Arg, +Argg)(do—ds;2) | & | &5 | OB | & | o | o
Total Arg(dy — ds;2) L1 -Z-41 3 |5 &
dl =41 (mod 7)7 + -
—2753c% (mod 14) 2 4 8 | 10 | 2 6
At T | 121513
(Arg, +Args)(do—ds;3) | & | & | 0 | & | o | o
Total Arg(dy — d3;3) 2l &l S -2l-21-3
dl =41 (mod 7)7? - -
7 (mod 42) 22 ] 26 | 32 | 34 | 38
3 11312615
—38¢? (mod 14) 416 | 2|10/ 12
Arg(dy —dy 1) 5= 55 [ = [ - | -u| & | & |-
(Argy+Argy)(do = dyl) | 5 | & | 11 | 7 | 11| 1
Total Arg(dy — ds; 1) -5 2 | -2 ¢ 2 2
dl =41 (mod 7)7 + -
—68c? = ¢ (mod 7) 1 5 4 6 3 5
M@ did) % [ 3T FE[
(Arg, +Argg)(de = d5i2) | 13 | 7 | 14 | 14 | 11 | u
Total Arg(dy — ds;2) -l 21 513 &
dl==1 (mod 7)? - —
—278¢7 (mod 14) 8 |12 4 | 6 | 10 12
Meda o i®) T | 1[5 [ 233
(Argy+Argy)(de = d33) | 17 | & | 11 | 7 | 11 | 1
Total Arg(dy — ds;3) Tl 213 |-3l-2 2
dl =41 (mod 7)? + +

TABLE 4.10. Table for Arg(dy — ds;0); 2|c, 3t¢, Ttc.
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& (mod 42) > [ 4] 8 [10]16]20
3 4l 215|416
93c? (mod 14) 4 8 2 6 4 12
2
R i) 5+ 02 | | & | &| k| | &
(Argy,+Argg)(ds —disl) | & | O | 5|l o | o | o
Total Arg(dy — ds; 1) -3 | -1 2 -1 -2
d0=+1 (mod 7)7 + -
18377 = 4¢ (mod 7) 1| 2 45 1] 3
Argi(ds = du2) s 5+ % | =3 | =51 | 1 | 1 | 1| "1
(Argy+Args)(ds —dil) | 57 | &4 | % | u | 1 | u
Total Arg(dy — ds;2) 23 -2 ) 3 |22
dl =41 (mod 7)7 + —
8152 (mod 14) S 12 4 ]12] 810
Rt di3) 3+ B L o5 -5 & | & | 5
e I T R
Total Arg(ds — dy; 3) z g N I
dl =41 (mod 7)7? — —
7 (mod 42) 52 [ 26 | 32 | 34 | 38 | 40
3 1132|653
98¢ (mod 14) 2o 10| 8 |12] 6 |10
Argy(ds >y 1) 5+ %0 | =% | & | & | 4 | ~u| u
(Argy+Argy)(ds = dgl) | 17 | 35 | 1 | T | u | 0
Total Arg(ds — dy; 1) 2 =i -2] 1 1
dl =41 (mod 7)7 + -
183¢” = 4¢ (mod 7) 11612 3] 516
Argi(ds = di2) 5 +% | g7 | 5 | | " | i | 1
(Arg, +Argg)(ds —d;2) | 2 | 2 145 | 2| & | &
Total Arg(dy — ds;2) -2 | 2 8] ¢ 3 2
dl==1 (mod 7)? + -
815c” (mod 14) 1162 10]12]6
Arg (dy — dg;3): 24822 8 L1511 3 1 5 1 1
Total Arg(dy — d3;3) g1 2231
dl =41 (mod 7)? - -

TABLE 4.11. Table for Arg(ds — dy;0); 2|c, 3t¢, Ttc.

34
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35
where the last congruence equality follows by aja; =4 (mod 7) and 1 (mod 3).
We still have (4.9)) in this case:

—12¢s(dy, ¢) + 12¢s(dy, ¢) = 0 (mod 8 x 2%)

because the proof of (4.9) does not depend on whether 3|c or not. Combining the above two
congruences we have Arg,(d; — dy; 0) = 2

= £, Then (Arg, + Argy)(dy — do;¢) = —2, which
gives Table |4.12]
¢ (mod 42) 6 | 12 | 18 | 24 | 30 | 36
B 6 3 2 d 4 1
—98¢? (mod 14) 2 | 4] 6| 8 |10/ 12
/2
Argy(dy = doi1) 5 =35 | =% | ~1i | ~% | 1 | b |
(Argy +Argy)(di — do;1) | =2 | =2 | =2 | =2 | =3 | =%
Total Arg(d; — do; 1) 212 22 2 &
dl =41 (mod 7)7? +
—183c* = 3¢ (mod 7) 4 1 5 2 6 3
Argi(dy = doi2) 5 +50 | 95 | =00 | A1 | Tad | 11|
(Arg, + Args)(dy — do; 2) 2 $ 2| -3 2 :
Total Arg(dy — do;2) 215 5 -2
dl==1 (mod 7)? +
—813c2 (mod 14) 118 112] 216 |10
e o R T R I R
Total Arg(dy — do; 3) g 2 312 1) -3
dl==+1 (mod 7)7 +

TABLE 4.12. Table for Arg(d; — da;¥); 2|e, 3le, Tt ¢

Next we check Arg(dy — ds; ¢) with dyay = dzas = 1 (mod 7). We compute Arg; via (4.6))
For Arg,(ds — d3;¢) we have

—12¢s(d3, ¢)+12cs(dy, ¢) = —dz—dsqzey+datdagsey = — B+ 8¢ d3gzey - dogzey (mod ¢). (4.18)
Then —12¢s(ds, ¢) 4+ 12¢s(dz, ¢) is a multiple of ¢’. After dividing by ¢’ we get

— 84s(ds, ¢) + 84s(dy, ¢) = —f + Basay = 12 (mod 21). (4.19)
The equality (4.13]) still holds:

—12¢s(ds, ¢) 4+ 12¢s(da, ¢) = 4 x 2* (mod 8 x 2*)

because its proof does not involve whether 3|¢’ or not. Combining the two congruences above
we can decide Arg,(ds — ds; ¢) via 48 (mod 7) and 4 (mod 8):

1,3,5,9,11,13
Arg,(dy — d3; 0) = —— ’14’ ’ when 5 =1,3,5,2,4,6.
This gives Table [£.13]
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& (mod 42) G [ 12 [ 18 [ 24 [ 30 | 36
16 6 3 2 5 4 1
—38c? (mod 14) 10 6 2 12 8 4
6/2
Argi(dy > 1) 5 =45 | & | —% |~ T | u | &
(Argy +Argg)(de = dsil) | 35 | 51 | 1 | 1| 4 | W
Total Arg(dy — ds; 1) 3 2 -2 2 |-2|-¢
d0=+1 (mod 7)7 - +
—68c¢? = ¢ (mod 7) 6 | 5] 4] 3|2 1
A F A B B B B B R B
Total Arg(dy — ds;2) Ll -2 253

dl =41 (mod 7)7 + | -

—273c2 (mod 14) 6 | 12| 4 | 10| 2 | 8
Mgt [ 1§ 5[ 1] 1] 1
(Arg, + Argy)(ds — d3;3) 1—?;1 % ﬁ % 1% ﬁ

Total Arg(dy — d3;3) -2l 2l % -3l &

dl =41 (mod 7)7? + -

TABLE 4.13. Table for Arg(d; — da; 0); 2|c, 3|c, 71 c.

Finally we check Arg(ds — dy; ¢) with dzas = djas = 1 (mod 7). For Arg, we apply (4.7).
Since ¢ is even, we have —35¢ = 4 (mod 14) and the sign always changes.
For Arg,(ds — dy; (), first we have

—12¢s(dy, ¢)+12¢5(ds, ¢) = —di—dazey +da+ds(aey = — B +B dugzey dagzey (mod 3c). (4.20)
Then —12¢s(ds, ¢) 4+ 12¢s(ds, ¢) is a multiple of ¢. After dividing ¢ we have
—84s(dy, c) + 84s(ds, ¢) = —f + Pagas = 96 (mod 21).
We also have ([(£.15)):
—12¢s(ds, ¢) 4+ 12¢s(da, ¢) = 4 x 2* (mod 8 x 2*)

because its proof does not involve whether 3|¢’ or not. Combining the two congruence equa-
tions above we can decide Arg,(ds — dy; ¢) with denominator 56 and numerator determined
by 383 (mod 7) and 4 (mod 8), hence

~1,3,5,9,11,13

Argy(ds — dy; 0) = 1A when 5 =6,4,2,5,3,1.

This gives Table [4.14]

Comparing Tables [£.12] [£.13) and [.14] we see that when 2|¢, 3|¢’ and 7 4 ¢, Condition
holds.

We have proved Proposition when 7||c. In the following subsection we prove Proposi-
tion {4.1| when 49]c.
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7 (mod 42) 6 [ 12 [ 18 [ 24 [ 30 | 36
B 6 3 2 ) 4 1
98¢ (mod 14) 12110 8|6 | 4]2
2
Avgy(dg i) g+ | 5 | & | % |1 1|0
(Arg, + Argy)(ds — dg1) | 2 | B 4| 2| L | 2
Total Arg(ds — dy; 1) -2 L1013 2
d0=+1 (mod 7)7 - +
184 = 4¢ (mod 7) 316 2|5 1 | 4
Argi(ds = di2):3+% | -5 o |21 5 | -3 5
(Argy+Argy)(ds = dg2) | 35 | 3 | 1 | 1 | u | 1
Total Arg(ds — dy;2) 2 2 | -% | & -2 -2
dl =41 (mod 7)7 + | -

8157 (mod 14) 0161 2 [12] 8] 4
Argy(ds > dii3): 5+ 5 | & | —%|~% | U | u | u
(Argy+Argy)(ds = dg3) | 35 | 3 | 1 | 5 | 1| u
Total Arg(ds — dy;3) —S -2 2 |2 2 g

dl =41 (mod 7)7? + —

TABLE 4.14. Table for Arg(dy — ds;0); 2|c, 3|c, 71 c.

4.5. Case 7|c. We still denote ¢ = ¢/7 and V(r,c¢) = {d (mod ¢)* : d = r (mod ()}
for  (mod ¢)*. Now |V (r,c)] = 7. Since (d + ¢/,¢) = 1 when (d,c) = 1, we can write
V(r,e) ={d,d+,d+2c,--- ,d+ 6} for 1 <d < and d =r (mod ).

We claim that Proposition is still true:

_3cal?

vm 2 CEL () ()0

Sin C
deV (r.c) ( 7

while this time we have seven summands. We prove (4.21]) by showing that there are only

three cases for the sum: all at the outer circle (radius 1/sin(%)), all at the middle circle
(radius 1/ sin(37)), and all at the inner circle (radius 1/sin(2%)). Moreover, the seven points
are equally distributed. Similar as before, we still denote P;, P, and P; for each term in
and investigate the argument differences contributed from each term.

For any d € V/(r,¢) and a (mod ¢) such that ad = 1 (mod ¢), we define d, = d + ¢’ and a,
by a.d, =1 (mod ¢). Specifically, we take a, =a—¢, a—2c,a+3¢,a+3c,a—2d,a— ¢,
when d = 1,2,3,4,5,6 (mod 7), respectively. Note that Pi(d) = (—1)*/sin(Z%) has period
. Hence we always have

Arg,(d = d;0) =0 and Argg(d — di; ) = g
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In the following two cases, we prove

Arg(d = d;0) =< 2 (mod 7); (4.22)
—1 d=3,4 (mod 7).

when ¢ = 1. In the other cases ¢ = 2,3, only P, is affected and we still get (4.22)).

Proof of Proposition when 49|c. It is clear that (4.22) implies (4.21)). O
One may visualize (4.22)) in the following graphs:
/=1, points for V(1,49) /=1, points for V(2,49) /=1, points for V(3,49)

w
-

B S &

A\

4.5.1. cis odd. First we suppose 3 1c. Whend = 1,6 (mod 7), by (2.2) we have —12¢s(d,, ¢)+
12¢s(d,c) = 0 (mod 6),

— 12¢s(dy, ¢) + 12¢s(d, ¢) = —d, — a, +d+ a =0 (mod ¢), (4.23)
and by (12.4) we have
—12¢s(dy, ¢) + 12¢s(d, ¢) = 2(%) — 2(%) = 0 (mod 8)

because (d%c/) = (d%cl)(dj—,cl) = (2)(4) = (%) always. Then —12cs(d.,c) + 12cs(d,c) =

0 (mod 24c¢) and Argy(d — d.;¢) = 0. Since Args(d — d.; () = 2, we have proved (4.22).
When d = 2,5 (mod 7), only (4.23) is affected and becomes
— 12¢s(dy, ¢) + 12¢s(d, ¢) = —d. — a, + d+ a = ¢ (mod ¢). (4.24)

After dividing 24¢ we get Argy(d — d,;0) = % We have proved (4.22) in this case.
When d = 3,4 (mod 7), (4.23) becomes

—12¢s(dy, ¢) + 12¢s(d, ¢) = —d, — a, +d + a = —4¢’ (mod ¢). (4.25)

We get Arg,(d — d,; () = 1 and (4.22).
Then we investigate the case 3|¢’. The following congruence

—12¢s(dy, ¢) + 12¢s(d, ¢) = 2(%) — 2(%) = 0 (mod 8)
still holds and we compute
—12¢s(dy, ¢) + 12¢s(d, ¢) = —d, — digzey + d + dgzey = —¢' + ddigsey - dgzey (mod 3c),
SO

—84s(d,, c) + 84s(d, c) = —1 4 a.a (mod 21).
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Since a,a =1 (mod 3) and a. = a (mod 7), we have

0 (mod 21) ifd=1,6 (mod 7),
— 84s(d.,c) +84s(d,c) =< 15 (mod 21) if d=2,5 (mod 7), (4.26)
3 (mod 21) ifd=3,4 (mod 7).

Then —28s(d., ¢) + 28s(d,c) = 0,5,1 (mod 7) and Arg,(d — d.; () = %21, respectively. We
have proved (4.22)) when ¢ is odd.

4.5.2. ¢ is even. The first case is 3 f ¢/. Congruences ([4.23), and are still valid
here. By (2.5), we define A > 1 by 2*||¢ and claim that
—12¢s(d,, ¢) + 12¢s(d, ¢) = 0 (mod 8 x 2%) (4.27)
To compute this, we have
—12¢s(dy, ¢) + 12¢s(d, ¢) = — dy — dy(gxary (€ + 3¢+ 1) — dyguoy - 2¢(1)
+d+ digupy (2 43¢+ 1) + digxory - 2¢(S) (mod 8 x 2)
=— + (P +3c+ 1)dysxory - digwony
— dyguy - 2¢( 1) + dgyony - 2¢(5) (mod 8 x 2%).

After dividing ¢ we have
—845(d., ¢) + 84s(d,c) = =1+ d.d(c* + 3¢+ 1) 4+ 2(5)d. — 2(£)d (mod 8)
=d(d+1)(d+1) +2(3)ds — 2(5)d (mod 8).

We also get
4 (mod 8) if 2||¢, d
d(d+1)(d+1)=< 0 (mod38) if2|c, d
0 (mod 8) if 4|c.

When 4le, it is not hard to show (7-)d. — (5)d = 0 (mod 4) and we have proved in
this case.

When 2||¢, we have Table [4.15| for val:= ()d. — (§)d (mod 4) using quadratic reciprocity.
Combining Table 4.15( and (4.28]) we obtain (4.27)).

1 (mod 4),
3 (mod 4), (4.28)

d (mod 8) 13|57
d, (mod 8) when ¢ =2 (mod 8) |3 5|71
val 2101210
d, (mod 8) when ¢ =6 (mod 8) | 7|[1[3]5
val 210(2]0
TABLE 4.15. Table for val:= (7)d. — (§)d (mod 4); 2[c, no requirement for

(3,¢), 7lc.

Combining (4.27)) with (4.23)), (4.24) and (4.25), we have proved (4.22)) when 2|c and 3 { c.
When 3|¢, we use (4.26]) instead of (4.23)), (4.24) and (4.25]). This finishes the proof of (4.22)).

We have proved Proposition , which implies (7-5,1) of Theorem .
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5. PROOF OF (7-5,2) OF THEOREM
Forall1</¢<6,n>0,7cand 71 A, if Al =+1 (mod 7) and ¢ = TA, (7-5,2) becomes

( )SY._(0,7n +5, ¢, u7)+22\/_5000(0 T +5,A, ur;0) = 0. (5.1)

We still denote ¢ = ¢/7 = A and V (r,¢) := {d (mod ¢)*: d=r (mod ¢)} for (r,d) = 1.
Recall (2.7) for p = 7. By lc = (A (mod 2) we have

). _ 3mical®
(—1) XP( 7 ) —ris(d,c) , (M) (5.2)

e
sin( ”?5 ) c

e(3)S(0,Tn+5,c,u7) = )

d (mod c¢)*

Recall that [Af] is defined as the least non-negative residue of A¢ (mod 7). By (2.8), when
[Al] =1, we denote T by Al = 7T 4+ 1 and

21’\/?5(%?0(0, n+5, A, ur;0)
3T+ ime .
— 22\/_( )A@ [AZ] Z e <<2 —;2 ) ) 677”8(37‘4)6 ((777/ + 5)‘8) . (53>

A
B (mod A)*
0<C<TA,7|IC
BC=-1(A)

By (2.9)), when [A{¢] = 6, we denote T by Al = 7T — 1 and have
2ivVTS (0,7 + 5, A, 117 0)
— Qiﬁ(_l)AZ—[Af] Z e ((g(T _ 1)2 + g(T — 1> + 1)0) e_Tris(B,A)e (<7n + 5)3) .

A A
B (mod A)*
0<C<TA,7|C
BC=-1(A)
(5.4)
For (r,d) =1 and any d € V (r,c), we define P(d) as
s
P(d) == ~ e~mislde)g (g) =: Pi(d) - Py(d) - Ps(d). (5.5)
sin(™2%) c

When Al = 7T + 1, we denote Q1(B) = i, Q3(B) = e( 722

0:(B) =<%) B and Q(B) = 27 - Qu(B)Qx(B)Qy(B):  (5.6)

when A¢ = 7T — 1, we only change the definition of Q2(B) to
((%(T — 1)+ 3(T 1)+ 1)0) o—is(B.A)

and still denote Q(B) = 2v/7 - Q1(B)Q4(B)Qs(B).

We divide the cases according to ¢’/ = £1 (mod 7), ¢, and the divisibility of A by 2,3. For
each r (mod A)*, recall that d; € V(r, ¢) is the unique d; (mod ¢)* such that d; = 1 (mod 7).
We compare the argument difference from Q(B) to P(d;), where we choose

B_{ —di\T, AL=7T+1,
dy

T Al = 7T — 1 and C = —7d1{A}. (5.8)
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We denote Arg(Q; — P;; ) in the following way: suppose Pj(d;) = Re® and Q;(B) =
Rpe®5 | then

Arg(Q; — Pj;¢) =a ifand only if © —Op = - 21 + 2k7 for k € Z.

We also denote Arg(Q — P; () = 23:1 Arg(Q; — P;; ). Note that if Arg(Q; — Pj;{) = «
then Arg(Q; — Pj;{) = a+ k for all k € Z.

With the notation above, we claim that the argument differences satisfy the following
proposition.

Proposition 5.1. For ¢ =7¢ =T7A, any r (mod )*, dy € V(r,c) and B chosen by (5.8)),

we have
Ab=TT+1: Arg(Q — P;() = 3 —i,i fort=1,2,3; (5.9)
7 14714
Al=TT —1: Arg(Q%P;E):%,%,—l—i fort=1,2,3. (5.10)
To visualize the argument differences, here are a few examples:
/=1, V(3,56), B=5. (Arg/27) /=2, V(1,77), B=8. (Arg/27) /=3, V(2,35), B=1. (Arg/27T)

rﬁ

B=1, Arg——

/=1, V(1,42), B=1. (Arg/2r) /=2, V(5,119), B=8. (Arg/27T) /=3, V(1,14), B=1. (Arg/2r)

13 10
: B=1, Arg:.—

%), CSC(277T), and Csc(377r),
respectively, from the outside to the inside. The point labeled by B represents @.

For the styles of the six points P(d;) for d; € V(r,c), we have the following condition.
This has already been proved by the tables in the former section, corresponding to the rows

marked with “¢¢ = £1 (mod 7)?” whose entries are + or —.

The red circles in the figures are centered at the origin with radii csc(
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Condition 5.2. When ¢ = £1 (mod 7), we have the following siz styles for these siz points
P(d) ford e V(r,c).

e ! =1. When ¢ =1 (mod 7), the arquments going di — do — d3 — dy — d5 —
d¢ — dy are %, —%, %, —%, 1_?:17 %, respectively. When ¢ = —1 (mod 7), the direction
1s reversed, as shown in the second line.

dl — d2 — dg — d4 — d5 — dG — dl
/] — 3 3 2 3 3 1
c/ = <m0d 7) ﬂB _37 ?2 _37 ﬂB 71

o ( =2. The first line is for /¢ =1 (mod 7) and the second line is for /¢ = —1 (mod 7).

dl — dg — dg — d4 — d5 — d6 — dl
¢ =4 (mod 7) —1—14 _% _% _% _1_14 %
¢ =3 (mod 7) = = g 5 L —Z
o (= 3. The first line is for ¢ =1 (mod 7) and the second line is for ¢ = —1 (mod 7)

dl — dg — d3 — d4 — d5 — dﬁ — d1
3
7

¢ =5 (mod 7) z = —3 3 I
d =2 (mod 7) —z - z - —z -4
If the six points P(d) for d € V(r,c) satisfy Condition [5.2] and Arg(Q — P;() satisfies
(5.9) and ([5.10)) in the corresponding cases, then we have
Srei= Y P(d)+Q(B)=0. (5.11)

deV(r,c)

Note that B is chosen from d; € V(r,¢) and A, hence from r and ¢. One way is by using

s 2 3T

095(7) n C?S( 7) _ C?S( 7) =7, where —— for j = 1,2, 3 are the radii.
s 2 3

sin(%)  sin(%)  sin(3) sin( %)

Proof of (7-5,2) of Theorem[1.3 This is implied by (5.1)), which is proved by (5.11)), (5.2),
(5.3), (5.4), 7B =r (mod A), and

e(3)S0(0,Tn+5, ¢, jiz) + 20V TS (0, Tn + 5, A, 117;0)
= (—1)A-1 Z Spe € (%) =0.
r (mod A)*
L]

Subsections are devoted to prove (5.9)), i.e. the cases Al = ¢ =1 (mod 7). We
will not repeat the proof for ([5.10) but just list a few key intermediate steps at the end.

5.1. Case ¢/ =1 (mod 7), 21 A, and 3t A. Recall d; =1 (mod 7) and d; = r (mod ¢).
Recall that we define 1 < <6 as ¢’ =1 (mod 7) and here 8 = ¢. Note that d; — fA =
7B (mod TA):

0 (mod 7),

r (mod A).

On the other hand, d; — 8¢ = r (mod A) and d; — ¢ = 0 (mod 7). The argument difference
between P3; and ()3 is easy to compute:

7 Arg(Qs — Ps; () = 5dyf = 50 (mod T) (5.12)

"TB=d(1—-Al)=d; 4+ (7T—dy)lA (mod TA), so 7B = {
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which does not depend on n.
Recall dyf743 = a1 (mod 7A) and By = 7digay (mod A). We have

—84A(S(d1, 7./4) - S(B, A)) = —d1 —ay + d1<1 — 514) + 49d1{A}
= —diBA — ay +49d1 g4y (mod TA).

Hence
—2 (mod 7)

48d1{A} (mod A) (5.13>

— 84A(s(dy, TA) — s(B, A)) = {
We also have
—84A(s(d1, TA) — s(B,A)) = —TA—1+2(&) + 7(A+1) — 14(8)
=6+2(%) +2(%4) () (mod 8),

where the last step is because (4,7) =1, (4 ) = ( )=1and 7B = d; (mod A). By A is odd
and AC =1 (mod T), we have (%) = (£)(— 1)*z". Combining 6|12¢s(dy, ¢) and 6|12As(B, A)

we conclude
(18 (mod 24), if A =1 (mod 4) which requires:
(=1, 4T;
(=2 T=7(mod 8);
orif A =3 (mod 4) which requires:
¢ =3, T=8 (mod 12);
— 84A(s(dy,7TA) — s(B,A)) =
6 (mod 24), if A = 3 (mod 4) which requires:
(=1, 2|T;
(=2, T =3 (mod 8);
orif A=1 (mod 4) which requires:
L (=3, T=2(mod 12).

(5.14)
Next we check the part of Qy other than e=™*(54) Since A is odd and T is even, we have

(37 + 1T) C = L(3T + 1)(—Tdyay)
= 1(3 = 3A0 = T)dya)

= —2T'dygay (mod A).
Then the part of Q5 other than e~ (%) ig

> T I 0 (mod 7),
e (24 . le{A}(_7T)) =e (48d1{A}(1 — AE)) , with numerator = ¢ 48d;14; (mod A),
24-7A 1684 0 (mod 24).
(5.15)
We conclude that
24 - TAArg(Q2 — Py;0) = Ry (mod 168A) (5.16)

where Ry is determined by (5.13)), (5.14) and (5.15): Ry = 0 (mod A), Ry = —2 (mod 7),
and Ry = 18,6 (mod 24) depending on the cases in (5.14)). Therefore, by A¢ = 1 (mod 7)
and A (mod 4) in (5.14) we conclude

23, 11, 13

Arg(Qy — Poyl) = 58

for £ =1,2,3. (5.17)
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Then we compute Arg(Q; — Py;¢). When ¢ = 1, since A is odd, A =1 (mod 14). Note
that both a; = 1,8 (mod 14) give the same result due to the sign of sin(%*). It is direct to
get

1 3 1 1
A s P . 1 = - — — — - = — .1
When ¢ = 2, we get A =4 (mod 7) and
1 3 1 5)

When ¢ = 3, we have A =5 (mod 14) and
Arg(Qr — Pi33) =5 — — — = =——. (5.20)

Combining (5.18), (5.19), (5.20), (5.17), and (5.12)) proves (5.9).

5.2. Case ¢/ =1 (mod 7), 21 A, and 3|A. In this case (5.12) still holds. For Arg(Q; —
Py;0), by ([2.3) we have

—84A(s(dy,7TA) — s(B,A)) = —d1 Al — dygo1ay + T(—di T) 34y (mod 21A).
We have
—84A(s(dy,7TA) — s(B,A)) = —d1 Al — dyzay +49(dy — di1 Al) (343
= —d Al + (48dy + d1 Al)dy 34y (dy — d1 AL) (33

= dy AL (drony(dy — diAl) sy — 1) +48diy (5:21)
= 48114} (mod 3A)
where in the second congruence we use
(&4 Y)m — 49y = Tony (& + y) my (—482 — 49y) (mod m)
for (x +y,m) = (x,m) =1 and in the last two congruences we use
MAT s} = M1 T{my} (od mymy) (5.22)

for (x,mymy) = 1. We still have
— 84A(s(dy, 7TA) — s(B,A)) = —2 (mod 7). (5.23)
Moreover, (5.14) and (5.15)) still hold except the second congruence in ([5.15) should be

changed to 48d;{4} (mod 3A4).
We conclude

24 -TAArg(Qy — Po;0) = Ry (mod 168A) (5.24)
where Ry is determined by (5.21), (5.23), (5.14) and (5.15): Ry = 0 (mod 3A4), Ry =
—2 (mod 7), and Ry = 18,6 (mod 24) depending on the cases in (5.14)). Therefore, by
Al =1 (mod 7) and ([5.14) we conclude

23, 11, 13
Arg(Qz = Poil) = == for (=123, (5.25)

The condition 3|A does not affect Arg(Q)y — Pi;¢) and Arg(Qs — Ps;¢). Combining
(5.25) with (5.18), (5.19)), (5.20)), and (5.12)), we have proved (5.9) in this case.
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5.3. Case ¢/ = 1 (mod 7), 2|A, and 3 { A. Recall (5.12). For Arg(Qs — P»;{) we
have (5.13) and need to use (2.5). Let A > 1 be defined as 2*||A. Recall B = —d;T and
7T+ 1= Al. We have

—84A(s(d1, TA) — (B, A))
= — dy — dy(sx2) (4947 + 21A 4+ 1) — 14dy (5,0 A(F)
+di (1= Al) +49(dy — d1 Al)(gxory (A* + 3A + 1) + 14Bg,00 A(5)
= — dy AL+ 4947 - dy Al(dy — dy AD) (500 r sy
+ 21A(6d; + dy AL)(dy — dy AL) (50011507
+ (48dy + dy A0)(dy — dy AL) 550y Aoy
+ 144 (B (3) = duger () (mod 8 x 2.
Since 2}||A with A > 1, we apply and 22 = 1 (mod 8) for odd z to get
—84A(s(dy,7TA) — s(B, A)) = 6d1 A+ di A% (1 + €) + 48dy {4y
+64 (B(g) - dl(%)) (mod 8 x 2V).

By (5.23), To determine B(4) — dl(d—A) (mod 4), we use the quadratic reciprocity (2.6). By
B <0 odd and A > 0, we compute

2%\_1 — 7‘2%\_1 dp—1
B(4) — di(H) = —diT(B)(—-1)* 7% —dy(&)(-1) "7
4 A (5.26)
_ 2 B 1 2 La1—
= —d, T(%=hAt)(1)(~1)*3 — d(B)(~1) 777 (mod 4)

Here are the cases:
(1) If 4|A, then we have T =1 (mod 4), B = —d; (mod 4). Moreover, (4=04¢) = (4)
always (note that A is even and we have to consider (4)). Now simplifies to
(£)di + 1 (mod 4). In this case d;A*((1 4 ¢) = 0 (mod 8 x 2*) and we conclude

2A + 48d1{A} (mod 8 X 2)‘), (=1,2;
6A + 48d1{A} (mod 8 X 2)‘), (= 3.

(2) If 2]]Aand ¢ = 1, then T' = 3 (mod 4), B = d; (mod 4) and the above simplifies
to d; — 1 (mod 4). Then as A(12d; — 6+ 2d; A) = 2A (mod 8 x 2*), we conclude the
same as the first line of .
(3) If 2|4 and ¢ = 2, then T =1 (mod 4), B = —d; (mod 4), and (4=04L) = —(d1),
Now gives d; — 1 (mod 4) and we again get the first line of 1-’
(4) If 2||A and ¢ = 3, then T = 3 (mod 4), B = d; (mod 4), and (2) = ( .
Here results in d; — 1 (mod 4) again. Note that d; A2((1+¢) = 0 (mod 8 x 2*)
and we get the second line of .
Next we check the part of Q5 other than e~™*(4¢)_ In this case A is even, so 3T +1 is even
and we have

— 84 A(s(dy,7TA) — s(B,A)) = { (5.27)

(3T° +1T) C = 3TH . T(~Tdyyay) =
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When written with denominator 24 - 7A, we have

(HeAney (36%% + 48d1{A}>

A 24-T7A

whose numerator is

0 (mod 7),
48d1{A} (mod 314),

36A€d1{A} + 48d1{A} = 4A ‘l— 48d1{A} (mOd 8 % 2)\)’ g — 1’ 3’ (528)
48d1{A} (mod 8 X 2)‘>, (=2.
Combining the above computation with (5.13)), (5.27)) and (2.2), we get
9,11,27
Arg(Qy — Py ) = = 28’ for ¢ =1,2,3. (5.29)

Then we compute Arg(Q1 — Pp;¢). When ¢ = 1, since A is even, é =4 (mod 7). Note that
a; = 1 (mod 14) because a; is odd. It is direct to get (remember @1 = 7)

AI‘g(Ql — Pl, 1) = - — - — - = . (530)

When ¢ = 2, we get 4 =2 (mod 7) and

1 3 1 D
A Pi2)=-—2_ - -2 31
Bl = A2 =57 717 75 (5.31)

When ¢ = 3, we have 4 = 6 (mod 14) and

11 1 3
A P;3)==-——-—- =—. 32
Q= i) =5 -7 717 3% (5.32)

Combining (5.30), (5.31), (5.32), (5.29), and (5.12]), we get
3 5 3

Arg(Q — P,g) = —?7 —ﬁ, ﬁ for ¢ = 1,2,3. (533)

This proves (5.9).

5.4. Case ¢! =1 (mod 7), 2|A, and 3|A. Comparing to the former case, the only differ-
ence in getting Arg(Q2 — P»; () in (5.29) is that we should using (5.21) instead of (5.13).
The result still holds in this case. The condition 3|A or 3 t A does not affect the
computation for Arg(Q)y — P;;¢) and Arg(Qs — Ps; (), hence we still have ([5.9):

Arg(Q — P; /) = —%, —1—511, % for ¢ =1,2,3. (5.34)

Now we have finished the discussion in all the cases for A when A¢ = 1 (mod 7) and
proved in Proposition . For the other case Al = —1 (mod 7), we will not repeat
the same process but just list the key argument differences below. For every r (mod ¢')*, we
compare P(dy) (p.5)) given dy € V(r,¢) and Q(B) (5.7) given
AL+
T
Now 7B = d; + d; Al. We shall get Table [5.1]

We have finished the proof of (7-5,2) of Theorem [L.3]

T :

>0, B= diT and C = —7d1{A}



VANISHING KLOOSTERMAN SUMS, WHOLE PROOF 47

Case 21 A: (=1((=2|(=3
Arg(Qy — Pi;0) —% % %
Arg(Qy — Po; () % —% _%
Arg(Q3 — P3; () % —% —%
Arg(Q — P;?) % = —%

Case 2| A: (=1((=2|(=3
Arg(Q — Pis0) | 32 = —=
Arg(Qs = Posl) | —% | =% | =
Arg(Qs — Ps;0) % —% —%
Arg(Q — P;0) 3 = —

TABLE 5.1. Table for the case A = —1 (mod 7)

6. PART (11) OF THEOREM [1.3

For prime p = 5,7 and integers a, b, recall the notation
ab __ amy __ b
Gy = cos(%F) — cos(7).
6.1. (5-1) and (5-2) of Theorem [1.3] We still denote ¢ = ¢/5 and first deal with the

case 25|c. For (r,c) = 1, recall (3.47) with V(r,¢), d and d, in that subsection. By (3.47),
we have Arg(d — d,; () = —+ for the 5n + 4 case. Since we have the 5n + 1 case here, we
obtain

Arg(d > du ) = -1 -3 = -1

5 c

Hence we get Séﬁlo(o, bn+1,¢,u5) = 0 for £ € {1,2}, 25|¢, and every n > 0. This proves
(5-1) when 25|c.
Similarly, in the 5n + 2 case, we obtain

Arg(d — dy;0) = —% — 2 _ -3,

We still get Sc(,ﬁ)oo((),5n + 2,¢,p5) = 0 for ¢ € {1,2}, 25|¢, and every n > 0, which proves
(5-2) when 25|c.

Now we focus on the case 5||c. For (r,¢) = 1, recall the notation of V(r,¢), d; and a;
in (3.3). By and Condition [3.2] we find that the argument differences of P(d) for
d € V(r,c) only depends on ¢’ (mod 5). Moreover, in (3.1)), if we change 5n +4 to 5n+1 or

to 5n + 2, then only the argument of Ps(d) is affected. Recall that we define 5 € {1,2, 3,4}
by 8¢ =1 (mod 5).

6.1.1. The 5bn + 1 case. As Proposition 3.1, we denote

3% = Z Py(d) Po(d) Ps(d) = Z %e_ﬂis(d’c)e <é> . (6.1)

wal
SN — C
deV(r,c) deV(r,c) ( 5 )

Here P3(d) = e(¢) instead of e(%?) in the 5n + 4 case Proposition . To prove (5-1) of
Theorem [I.3] it suffices to show

ct sin(%)sgg + 2 sin(%”)sfc) = 0. (6.2)
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48

48

When we compute Args(d; — djiq1;¢) for j = 1,2,3, previously it was e(%*) and now

it should be e(Z).
Condition [3.2in each case.

5

Therefore, we need to subtract % from the argument differences in

Since we need both ¢ = 1 and ¢ = 2 appears at the same time, we write our new condition
in the following way. It is important to note that the way we compute Arg(dy — dy;¢) is by

3
ZAI‘g(d] — dj+1; 6) + Arg(d4 — dl,g) =0

j=1

but not by subtracting %

Condition 6.1. For the 5n + 1 case, we have the following styles of argument differences:

e /=1 (mod5), g=1;

=1 (I'IlOd 5) d1 — d2 — d3 — d4 — d1
Arg(d, — dy; 1) —% % —% %
Arg(d, — d,;2) % —% % 13—0
e /=2 (mod 5), f=3;
=2 (mod 5) d1 — dg — d3 — d4 — d1
Arg(d, — dy;1) —15 -3 -3 %
Arg(d, — dy;2) —2 z —2 =
e /=3 (mod5), f=2;
c = (HlOd 5) d1 — dg — d3 — d4 — d1
Arg(d, — d,; 1) = = < L
Arg(d, — d,;2) 2 3 2 -3
e ¢ =4 (mod 5), f=4.
d = (HlOd 5) d1 — dg — d3 — d4 — d1
Arg(d, — dy; 1) 1% % 13—0 —lio
Arg(d, — d,;2) —2 = —2 -

The condition above corresponding to the following styles of P(d) for d € V(r,c):

/=1, points for V(1,5)

/=2, points for V(1,5)

/=1, points for V(1,10)

/=2, points for V(1,10)

ds
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/=1, points for V(5,40) /=2, points for V(5,40) /=1, points for V(2,45) /=2, points for V(2,45)

ds

o w

For every two graphs close to each other in a row which satisfy the argument differences in
the corresponding cases in Condition , it proves (6.1)) due to the following equations:

24 im 12 oany (€08(35)  cos(5F) _
C5" cos(%5) + Cy” sin(2) (sin(lgo) - sin(%) =0, ford =1,4 (mod 5);
cos({5)  cos(3f) 12 03 :
- ’ o) = fi =2 d 5).
) <sin(§) sin(%ﬂ) + C57cos(55) =0, for ¢ ,3 (mod 5)
This proves (6.2]), hence proves (5-1) of Theorem [1.3]

6.1.2. The 5n+2 case. As (6.1)), we denote Ps(d) = e(24) instead of e(22) in the 5n+4 case

Proposition 3.1| and instead of (%) in the 5n + 1 case (6.1). To prove (5-2) of Theorem ,
it suffices to show

adz

C2" sin(

SHE

cot sin(%)sq(n’lc) + CP? sin(%”)sq(n’zc) = 0. (6.3)

When we compute Argy(d; — djiq;¢) for j = 1,2,3, in (6.1]) it was e(g) and now it should
be e(%). Therefore, we need to add g to the argument differences in Condition [6.1|in each

case to get the following condition.

Condition 6.2. For the 5n + 2 case, we have the following styles of argument differences:
e /=1 (mod5), f=1;

d=1(modb) |dy — do — dy — dy — d
Arg(d, — dy; 1) —15 —15 —15 3
Arg(d, — dy;2) —2 = —2 -

e /=2 (mod5), f=3;

d=2 (mod 5) d1 — dQ — d3 — d4 — d1
Arg(d, — dy; 1) = = = L
Arg(d, — d;2) : i : :
e /=3 (mod5), f=2;
d = (mod 5) d1 — dg — d3 — d4 — d1
Arg(d, — d,;1) —15 -3 -3 -5
Arg(d, — dy;2) —3 - —3 2

e /=4 (mod 5), g =4.
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‘ c = (mod 5) ‘ d1 — d2 — dg — d4 — d1 ‘
Arg(d, — dy;1) i i n I
Arg(d, — d,;2) % —% % %

The condition above corresponding to the following styles of P(d) for d € V (r,c).

/=1, points for V(1,5) /=2, points for V(1,5) /=1, points for V(3,35) /=2, points for V(3,35)

d

ds

d; d4

)
()

da

1@
@),

/=1, points for V(7,40) /=2, points for V(7,40) /=1, points for V(8,45) /=2, points for V(8,45)

Y
N7

For every two graphs with same ¢ which satisfy the argument differences in the corresponding
cases in Condition [6.2] it proves (6.3) due to the following equations:

d
a2

D)

@

D
@

04 . COS(?S) 02 COS(?g) COS(lO) ,

; Ty . 2r — = f =1.4 (m ;
Cy " sin(%) sin(257r) + C5 7 sin( %) 5111(25”) sm(2) 0, forc ,4 (mod 5);

04 - /x s(1p) COS(?O) 02 . sony COS(75) ;o

) ™ _ — ’ £5) . = f = 2 d .
Cy " sin(%) ( ) sm() Cy” sin(2) sm(2) 0, forc ,3 (mod 5)

This proves (5-2) of Theorem

6.2. Restate the condition for (7-5) of Theorem [1.3] We still denote ¢ = 7TA = 7¢.
When 49|c, recall the notation in and we have (£.22)) for any d € V(r,¢) and d,, = d+¢":

—% d=1,6 (mod 7);

Arg(d = dy;0) = 2 d=2,5 (mod 7); (6.4)
—1 d=3,4 (mod 7).
When 7||¢/, denote A = ¢ = ¢/7 and recall the notation of V(r, ¢) before (4.1)) and d; and

a; in (4.4). We combine Condition Condition , (5.9) and (5.10) and get the following

condition:

Condition 6.3. For the Tn + 5 case, we have the following conditions on Arg(QQ — P;{)
when Al = +1 (mod 7) with tables for Arg,;(dy — dy; ().

e /=1(mod 7). A-1=TT+1, Arg(Q — P;1) = —%;

e /=2(mod 7). A-3=TT—-1, Arg(Q — P;3) = —%;
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cd = (mod 7) dl — d2 — dg — d4 — d5 — d6 — dl
T I I T
whdd)| ok ko ok
PO S S A S SN
c = (mod 7) dl — dg — d3 — d4 — d5 — d6 — d1
Arg(d, — dy; 1) - —2 —1 —2 -2 g
T I S T N S B
PO S S S S
e /=3 (mod 7). A-2=TT—-1, Arg(Q — P;2) = .,
d = (mod 7) d1 — d2 — d3 — d4 — d5 — d6 — d1
Arg(d, — dy; 1) o 2 1 2 z —3
Arg(d, — d,;2) L Z 3 = L —2
Arg(d, — dy;3) g — —3 —Z 2 2
e /=4(mod 7). A-2=TT+1, Arg(Q — P;2) = —;
d = (mod 7) d1 — d2 — dg — d4 — d5 — d6 — d1
Arg(d, — dy; 1) —= -2 —z —2 -2 —3
T I S T N
AT S S R S R
e /=5(mod 7). A-3=TT+1, Arg(Q — P;3) = &;
d=5 (mod 7) dl — d2 — d3 — d4 — d5 — d6 — dl
Arg(d, — dy; 1) = z z 2 = —2
Arg(d —di2)| & u : TR 7
rgdv=did) | 3 35 =3 5 3 :
e =6 (mod7). A-1=T7T—1, Arg(Q — P;1) = 2.
=6 (Il’lOd 7) d1 — d2 — d3 — d4 — d5 — d6 — d1
Arg(d, — dy; 1) - 3 —z 2 -Z —2
Arg(d — dy;2) 2z L 2 4 < :
PO S S N S N

Now we start to prove the (7-k) cases for k € {0,1,2,3,4,6}.

51
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6.3. (7-0) of Theorem [1.3] As (4.1I), we still denote V(r,c) = {d (mod ¢)* : d =
r (mod ¢)'}, d; € V(r,c) by d; = j (mod 7). Recall the Kloosterman sums defined at

(2.7), (2.8) and (2.9).
For A= =¢/7, when Al = 7T + 1 for some integer 7' > 0, as (5.6 we define

Q(B) := 2V7Q:(B)Q2(B)Qs(B) (6.5)
with Q1(B) := (—1)"4i and

Qa(B) ::e(w), and QS(B):6(¥>:1 (6.6)

and let B = —d,T with C' = —7dy{43. When Al = 7T — 1 for some T" > 0, we still define
Q(B) as above while we take

. ((g<T - 1)2X ST +1)C

) , and B=dT. (6.7)

instead. Note that when A is fixed, ¢ is also fixed, i.e. there is only one corresponding Q(B)
for every fixed c.
We define the sum on V(r,¢) as

37(2 = sin(%) Z Py(d)Po(d) Ps(d) + sin(%)1 a—ey7 Q(B), where

deV(r,c) [Af]=1,6
‘o2 (6.8)
(—1)e (_301% ) 12¢s(d, c) 0-d
Pi(d) = , Pyd)=e|l—"7"2), Pd)=e|l—|=1.
1(d) sin(%az) 2(d) ( 24c ) 3(d) ( c >
Here 1 onaition €quals 1 if the condition meets and equals 0 otherwise.
To prove (7-0) of Theorem it suffices to show
o) + 0% + C24s8) = . (6.9)

girst we deal with the case 49|c and there is no Q(B). We need to subtract 2 from (6.4)
and get

0 d=1,6 (mod 7);
Arg(d — d;0) =< —2 d=2,5 (mod 7);
1 d=3,4 (mod 7).

When r = d = 2,3,4,5 (mod 7), we get equi-distribution and follows. When r =
d = 1,6 (mod 7), note that Pi(d) = (=1)™/sin(T%) for ad = 1 (mod c) have the
same sgn Py (d) for ¢ = 1,2,3. Hence every summand for d € V(r,¢) in have the same
argument and we get by

Next we check the condition for 7|c. Comparing with Condition[6.3] since we have different
P3(d) and Q3(B) in this case, we need to subtract % in Arg(d; — d;j41;¢), 1 < j <5 from
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Condition . We also need to add F% to Arg(Q — P;¢) when Al = £1 (mod 7). It is
important to note that we compute Arg(dg — di; ) by

5
> " Arg(d; = djai; 0) + Arg(d — di3 () =0

j=1
instead of adding Iﬁ’—f
Condition 6.4. For the Tn case, we have the following conditions on Arg(QQ — P;{) when
Al = £1 (mod 7) with tables for Arg,(d, — dy; ).
ed=1(mod7),=1. A-1=7T+1, Arg(Q — P;1) = —=

1.
7

=1 (HlOd 7) dl — d2 — d3 — d4 — d5 — d6 — dl

T R T I I

Arg(d — dy;2) 1 7 0 7 i1 2
wdoody)| 2 ok i

e =2(mod7),B=4. A-3=T7T -1, Arg(Q — P;3) = —;

d=2 (mod 7) dl — d2 — d3 — d4 — d5 — d6 — dl

Arg(d, — dy; 1) -= —3 0 —3 -2 —2

Arg(d —ds2) | - i —3 v — 4 7
rg(d, — dy; 3) 0 -4 2 -4 0 —3

/

e =3 (mod 7). A-2=7T—1, Arg(Q — P;2) = -3

=3 (mod 7) dl — dg — d3 — d4 — d5 — d6 — dl
ETRUEE S T I B
e I T T
wdoodsy| b &0 4 b
e =4(mod7), =2 A-2=TT+1, Arg(Q — P;2) = %;
=4 (mod 7) d1 — dg — d3 — d4 — d5 — d@ — d1
e i & F o E
S nr BT S S N B
wdodiy| L o4 0 op 1

e /=5(mod7), =3 A-3=TT+1, Arg(Q — P;3) = 3;

47

e =6(mod7),5=6. A-1=TT-1, Arg(Q—>P;1):%.

Note that the condition for ¢ (mod 7) is the same as the reversed condition for —¢ (mod 7).
Hence we only need show the corresponding graphs for ¢ = 1,2,3 (mod 7), and also for the
other Tn + k cases in the remaining subsections. In each of the following graphs, if d, and
d, are not shown, then P(d,) = P(d,) are both the remaining non-labeled point.
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d=5(mod7) |d — do — d3y — di — dy — dg — d
Arg(dy — dil) | 3 I 0 T E
Arg(d, — d,;2) o L 1 -4 L -1
Arg(d, — d,;3) 0 L —2 i 0 z
=6 (mod7) |dy — do — d3 — dy — ds — dg — dy
SOET R IR S D
Arg(d, — dy;2) — 3 0 —3 —L 3
Arg(d, = d;3) 7 i : T 1 —z

/=1, points for V(1,7)

/=2, points for V(1,7)

/=3, points for V(1,7)

/=1, points for V(1,14)

3
<

/=2, points for V(1,14)

a
NSEi

(=3, points for V(1,14)

$
J/

%
v

/=1, points for V(2,21)

ds

7

2
5

/=2, points for V(2,21)

ds

d

Jj

&
&
S
Qk
[))
2

vy)
n

/=3, points for V(2,21)

(S
S

B=2

dy

s£Y
-

S
(o)

&

&

54
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Visualizing by the above graphs, is proved by the following equations:
i sin(2) ((:(')8(27”) N cos(3) B cos(%“)) 82 gin (2 (005(37“) B cos(3) 1 ))

sin(7)  sin(%)  sin(3) sin(Z)  sin(%)  sin(3F

24 . 3n cos(7) | cos(F)) e P
+ C7" sin(F) (sm(%) + in(Z) + sz ) = sin(2)y/7

This proves (7-0) of Theorem [1.3
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6.4. (7-1) of Theorem We follow the definition (6.8), and (6.7)) but we use

Py(d) = ¢ (g) and  Q3(B) :=e¢ (g)

1)
C24s 9 + O @4 062 @

046 (1) +C62 (2) +024 $32
where Q(B) is determined by A = c/7 Al = +1 (mod 7) for £

)

e {1,

(6.10)

(6.11)

2,3} as and (6.7)).

When 49]c, there is no Q(B) term. By subtracting 2 from (6-4), Arg(d — d,; ¢) is always
a non-zero constant for a fixed r (mod ¢’). Then we get by sf}c =0forf/=1,2,3.

When 7]|¢, from Condition -
when A¢ = £1 (mod 7) and add

condition.

for the 7n case, we need to add i§ to Arg(Q — P;{)
= to Arg(d; — djy1;/0) for 1 < j <'5. We get the following

Condition 6.5. For the Tn + 1 case, we have the following conditions on Arg(QQ — P;/)

when Al = £1 (mod 7) with tables for Arg;(d, — dy; ).

e/=1(mod7),=1. A-1=T7TT+1, Arg(Q — P;1) =0;
d=1 (mod 7) d1 — d2 — dg — d4 — d5 — d6 — d1
Arg(d, — dy; 1) = 0 -2 0 - 0
e T T T R S
rg(d, — dy;3) 0 — -1 -3 0 —3
e =2(mod7),5=4. A-3=TT—-1, Arg(Q — P;3) = %;
c = (mod 7) dl — dg — dg — d4 — d5 — d6 — d1
T ETE S
e T T A B
N | e S S S S TR
e /=3(mod7),B=5 A-2=7T-1, Arg(Q — P;2) = %;
=3 (HlOd 7) dl — d2 — d3 — d4 — d5 — d6 — dl
A o S B B e
Arg(d — dy;2) < 3 —3 3 < 0
SORRYED N S S B G R
e =4(mod7),5=2 A 2:7T+1,Arg(Q—>P;2):%;
e d=5(mod7), =3 A-3=TT+1, Arg(Q — P;3) =3;
e =6(mod7),5=6. A-1=7T-1, Arg(QQ — P;1) =0.

The following graphs for ¢ = 1, 2,3 (mod 7) show the relative arguments of corresponding

styles in Condition In each graph, if d,, and d, are not shown, then P(d,) = P(d,) are
both the remaining non-labeled point.
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d=4(mod7) |d — dy — dy — dy — ds — dg — di
Arg(d, — dy; 1) 5 -3 —2 : I I
Arg(d — dy; 2) -3 : g -1 S 0
[T N R T S S N

d=5mod7) |d — do — d3z — di — ds — dy — di
Arg(d, — dy; 1) > —32 g —3 3 I
e IS S R B .
Arg(d, — d,;3) 3 > L ! 3 0

=6 (mod7) |dy — do — d3g — dy — dy — dy — dy
Arg(d, — dy; 1) = 0 Z 0 s 0
Arg(d — dy; 2) -3 z 1 S —3 2
Arg(d, — dy;3) 0 2 i 2 0 2

/=1, points for V(1,7)

B=0

ol

/=3, points for V(1,7)

ds dy

oS

da

/=1, points for V(1,14)

de dy

(=3, points for V(1,14)

o

Q'JD‘

&
@
N

/=1, points for V(2,21)

ank
S K

ds

ds %d“ ) p

w

/=3, points for V(2,21)

d

N/

~dh

57
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Visualizing by the above graphs, (6.11]) is proved by the following trigonometric identities:

_ 1 cos(%Z)  cos(%) , cos(Z)  cos(%Z)  cos(%)
02,4 T _ 7/ 7 0476 2w 7/ 7/ 7
7 sin(3) (sin(%) sin(2)  sin(3F) +C77sin(F) sin(7)  sin(3%)  sin(3)
s 3 3
62 gip (31 cos(7) _ cos(=7)  cos(F) 2 (E )T
+ C77 sin (%) (D)~ sm(Z)  sm(Z) o sm(7)\/_’

oulf) _onE) )Y g () onlE) ol
62 (3n _COS(%) cos(7) 1 52 gy (3
+ 07 () sin(%) sin(27”) sm(377r)> T (7 )ﬁ7

as well as the identities where the tuple (C5*, C2°, C9?) is changed to (Cy°, C%, C2*). This
proves (7-1) of Theorem [L.3]
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6.5. (7-2) of Theorem We follow the definition (6.8), and (6.7)) but we use

2d 2B
Pg(d) =e (—) and Qg(B) =€ (7) (612)
c
instead. The following equation suffices to prove (7-2):
08 4 (0262 4 C015®) — g, (6.13)

When 49|c, there is no Q(B) term. By subtracting 2 from (6.4), we get Arg(d — d.; ) # 0
when r =d = 1,3,4,6 (mod 7), hence 35?2 =0 for ¢ =1,2,3. When r =d = 2,5 (mod 7)
(a=4,3 (mod 7)), note that P;(d) = (—1)@D/sin(2) has

] (=1,2, a=3 (mod 7); or { =3, a =4 (mod 7);
sgn Pi(d) = { -1, (=1,2, a=4 (mod 7); or { =3, a=3 (mod 7).
By
0,6 Sin(%) 0,2 sin(%”) 074sin(37”) o
T (3T + C'7 (Y T 2wy 0
sin(%") sin(%) sin( %)

We have proved ([6.13]) for 49]c.
When 7||¢, from Condition for the 7n + 1 case, we need to add j:é to Arg(Q — P;{)

when A¢ = £1 (mod 7) and add g to Arg(d; — dj;1;¢) for 1 < j < 5. We get the following
condition.

Condition 6.6. For the Tn + 2 case, we have the following conditions on Arg(QQ — P;{)
when Al = +1 (mod 7) with tables for Arg,;(dy — dy; ().

ed=1(mod7),B8=1. A-1=7T+1, Arg(Q — P;1) =1

= 7"

cd = (Il’lOd 7) d1 — d2 — d3 — d4 — d5 — d6 — d1
Arg(d, — d,; 1) -< I —1 I —3 2
Arg(d, — d,;2) Z : 2 2 = 0
Arg(d, — d,; 3) z L 0 ~2 z —1

e =2 (mod7), =4 A-3=TT-1, Arg(Q—>P;3)=11—4;

d=2(mod7) |d — dy — d3 — dy — ds — d¢ — dy
Arg(d, — dy; 1) —1—14 0 % 0 —ﬁ 0
Arg(d, — dy;2) ﬁ % 0 13—4 ﬁ %
Maoodiy)| L x5 1
e /=3(mod7), =5 A-2=T7T-1, Arg(Q — P;2) = 13—4,
c = (IIlOd 7) d1 — d2 — d3 — d4 — d5 — d6 — d1
Arg(d, — dy;1) = I 0 I 3 2
Arg(d, — d,;2) -+ 2 2 < -+ 3
Arg(d, — dy;3) 2 : 2 2 2 0
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d=4(mod7) |dy — do — d3g — dy — dy — dg — di
Arg(d, — dy; 1) -3 —3 0 —3 - —2
s L T S T S
OS] B R S S S S
d=5mod7) |dy — do — dyg — dy — dy — d¢ — d;
Arg(d, — dy; 1) o 0 —3 0 = 0
Arg(d, — d,;2) —ﬁ —134 0 _134 _1_14 —%
Meoodit)| b o -y oy 4
e d=4(mod7), =2 A-2=TT+1, Arg(Q — P;2) = —&;
e =5(mod7), =3 A-3=TT+1, Arg(Q — P;3) = —1;;
e /=6(mod7),=6. A-1=T7T—-1, Arg(Q — P;1) = —1.
=6 (mod7) |d — do — d3z — dy — dy — dyg — dy
T S S T T
Arg(d — dy;2) -3 -3 —2 -3 -3 0
rg(d, — dy; 3) —1 + 0 L 1 z

60

The following graphs for ¢ = 1,2,3 (mod 7) show the relative arguments of corresponding

styles in Condition In each graph, if d, and d, are not shown, then P(d,) =

both the remaining non-labeled point.

/=1, points for V(1,7)
B=0

%de

Q

/=2, points for V(1,7)

(=3, points for V(1,7)

Y

JJ

/=1, points for V(1,14)

£

ds ///N\ 02 ds

Q
&JJ

(=3, points for V(1,14)

ds

ﬁ*ﬁ
.

/)

N

firy

"
N

%J

P(d,) are
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/=1, points for V(2,21) /=2, points for V(2,21) /=3, points for V(2,21)

4

ds

Visualizing by the above graphs, (6.13)) is proved by the following trigonometric identities:
cos(Z)  cos(Z)  cos(%)

06 . (x Z 02 .« or _cos(27”) 1 cos(%”)
C7”sin(3) ( sin(Z)  sin(3) sin(%’r)) + G sin(F) ( sin(7) * sin(%F) * sin(27)

1 z 7
+C’$’4 Sin(377r) (_ B COS(;r) - C08(37))) = _CS’G Sin(%)ﬁ’

sin(7)  sin(F)  sin(3F

C2%sin() (_Sml(%) _SCIZS((; _:ﬁé))) 02 () (_698<37”) o) 1 ))

3 s
94 gin (3 [ — T cos(F) | cos(7) _ 04 31y /7
+ C7" sin (%) ( sm(z) "+ sm(Z) + () 7 sin( W7,
Z 1 cos(2F) cos(Z)  cos(3Z)  cos(%)
06 G (x _COS<7) 7 0 2 7 7) 7 )
7 sin(%) ( sin(7) * sin(3F) * sin(3F) TG sin(Z)  sin(3)  sin(3)

This proves (7-2) of Theorem [1.3
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6.6. (7-3) of Theorem We follow the definition (6.8)), and ([6.7) but we use
d B
Py(d) = e (3—) and  Qs(B) = ¢ (%) (6.14)
c
instead. The following equations suffice to prove (7-3):

03’437(4710) + C?’Gs,(fc) + O3

(200 1 01202 1 OB
When 49|c, there is no Q(B) term. By subtracting 2 from (6.4), Arg(d — d.; () is always
a non-zero constant for a fixed r (mod ¢’). Then we get by st,=0for £ =1,2,3.
When 7||¢, from Condition [6.6| for the 7n + 2 case, we need to add +£ to Arg(Q — P;/)
when A¢ = £1 (mod 7) and add 2 to Arg(d; — dji1;¢) for 1 < j < 5. We get the following
condition.

(6.15)

Condition 6.7. For the Tn + 3 case, we have the following conditions on Arg(QQ — P;{)
when Al = +1 (mod 7) with tables for Arg,;(dy — dy; ().

e /=1(mod7),=1. A-1=7T+1, Arg(@—)P;l):%;

d = (mod 7) d1 — d2 — d3 — d4 — d5 — d6 — d1
Arg(d, — dy;1) — i Z 0 2 —L !
msoodi) |3 k1 k4
IR e] I S S S S B
e /=2(mod7),=4. A-3=T7T—-1, Arg(Q — P;3) = —15—4;
c = (H’lOd 7) d1 — d2 — d3 — d4 — d5 — d6 — d1
T I I
Mo d)| ko ok o
Arg(d, — d; 3) —2 -5 0 -3 —2 2
e /=3(mod7), =5 A-2=TT—-1, Arg(Q — P;2) = —;
=3 (mod 7) d1 — dg — d3 — d4 — d5 — d6 — d1
T
Arg(d, — d,;2) - -4 0 -5 - —3
Arg(d, — dy; 3) 0 & z & 0 g
e d=4(mod7), =2 A-2=TT+1, Arg(Q — P;2) = ;
d=4 (H’lOd 7) d1 — d2 — dg — d4 — d5 — d6 — d1
R T N T
Arg(d, — d,;2) & = 0 = = 3
Arg(dy — dy; 3) 0 - ~1 —3 0 3
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63
d=5mod7) |d — do — dy — dy — ds — dg — d;
Y] I S S R S
Arg(d —d2) | § 1 7 i u 7

mgdaodsn)| 3 0y 3

=6 (mod7) |d — dy — d3 — dy — ds — dy — dy

Arg(d, — d,; 1) i —2 0 —£ i 2

N S B S R
R e T S S T S

e /=5(mod7), =3 A-3=T7T+1, Arg(Q — P;3) =
e =6(mod7),5=6. A-1=7T-1, Arg(QQ — P;1) = -2

The following graphs for ¢ = 1,2,3 (mod 7) show the relative arguments of corresponding

styles in Condition In each graph, if d,, and d, are not shown, then P(d,)

both the remaining non-labeled point.

/=1, points for V(1,7) /=2, points for V(1,7)

w) = P(d,) are

(=3, points for V(1,7)

dy ds

&

o

/R
d1 HWJ daUd“

/=1, points for V(1,14) /=2, points for V(1,14)

d3

73

(=3, points for V(1,14)
B=1

VAR

@

N

/=1, points for V(2,21)

/=2, points for V(2,21)

S

)

%

da d

(=3, points for V(2,21)

&

i3

B=2

N;
2
o8
6

W

N

()
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Visualizing by the above graphs, (6.15) is proved by the following trigonometric identities:

s 1 cos(22) cos(%)  cos(%)  cos(3F)

%4 (= _COS<7) _ 7 06 gin(2my [ — 7 ) 7

7 sin(?) < sin(%)  sin(3F * sin(3) 77 sin() sin(%) * sin(%)  sin(¥)
27

i ey (€O8(E) osE) (D)) o con() | cos(E) cos()
G Sm(7)<sm(§) sin(%)  sin(%F) TG (7)< sin(7) sin(27”)+sin(37”))

as well as the identities where the tuple (CY*, C¥°, C9?) is changed to (CZ°, C3%, C3*). This
proves (7-3) of Theorem [1.3]
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6.7. (7-4) of Theorem We follow the definition (6.8)), and ([6.7) but we use

Py(d) = e (‘%d) and  Qy(B) = (%) (6.16)

instead. The following equations suffice to prove (7-4):
002 (1 004 (2) + COG $32 O
G251+ CHsl2 + O340 = 0 (047

When 49|c, there is no Q(B) term. By subtracting % from (6.4), Arg(d — d,;¥) is always
a non-zero constant for a fixed r (mod ¢'). Then we get (6.17) by s,(Q =0forl=1,2,3.
When 7]|¢, from Condition for the 7n + 3 case, we need to add +£ to Arg(Q — P;/)

when A¢ = £1 (mod 7) and add = to Arg(d; — djy1;0) for 1 < j <'5. We get the following
condition.

Condition 6.8. For the Tn + 4 case, we have the following conditions on Arg(Q) — P;{)
when A = £1 (mod 7) with tables for Arg;(d, — dy; ).

e=1(mod7),5=1. A-1=TT+1, Arg(Q—)P;l)Z%;

d = (mod 7) d — dy — dg — dy = d5 — d6 — d
Arg(d, — d,; 1) = 2 : 3 Lz —1
S T T T T
whodm| % ¢ & 4
e /=2(mod7), =4 A-3=TT—-1, Arg(Q — P;3) = =
d=2 (mod 7) dl — d2 — d3 — d4 — d5 — d@ — dl
ey ) e S A e
Arg(d — dy; 2) % % % % % _%
) N S S T S N
e /=3(mod7), =5 A-2=T7T-1, Arg(Q — P;2) = —%;
c = (H’lOd 7) d1 — dg — d3 — d4 — d5 — d6 — d1
Arg(d, — d,; 1) -2 —3 Z i -3 I
Arg(d — dy;2) & -5 —2 -3 = 2
AR T S S S T
e =4(mod7), =2 A-2=TT+1, Arg(Q — P;2) = %;
d = (mod 7) d1 — d2 — d3 — d4 — d5 — d@ — d1
e ) e e A
Arg(d — dy;2) - Z 2 & -2 —2
EREEE | A S N S N
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cd = (mod 7) dl — d2 — d3 — d4 — d5 — d6 — d1
R
Arg(d —d2)| % Tu TF T i :

AR I N S N S R
d = (mod 7) dl — d2 — d3 — d4 — d5 — d6 — d1
COETRIEEE S I I B
Arg(d — dy; 2) % 1_?21 % 13_4 % %
Y I T S T S R
e /=5(mod7), =3 A-3=T7T+1, Arg(Q — P;3) = 14;
e =6 (mod7),3=6.A-1=7T—1, Arg(Q — P;1) = —2.

The following graphs for ¢ = 1,2,3 (mod 7) show the relative arguments of corresponding

styles in Condition In each graph, if d, and d, are not shown, then P(d,) =

both the remaining non-labeled point.

/=1, points for V(1,7) /=2, points for V(1,7)

P(d,) are

(=3, points for V(1,7)

NS

ad

/=1, points for V(1,14)

\\de

/=2, points for V(1,14)

V!

(=3, points for V(1,14)

e

&
Y

RN

d

/=1, points for V(2,21) /=2, points for V(2,21)

ve]

U

N
[}

>>

i

(6]

o &

d; %
3

/O/
i,
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Visualizing by the above graphs, (6.17)) is proved by the following trigonometric identities:

(S 2 ) (220
B e

o (55 5) i (252529
+ C20sin(3x) (—Cs(zig)) - Sm(lgr) ng—?) =~V

o (2 (1)

as well as the identities where the tuple (CY*, C¥*, C9°) is changed to (CZ°, C3%, C$*). This
proves (7-4) of Theorem [1.3]
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6.8. (7-6) of Theorem We follow the definition (6.8), and (6.7)) but we use

6d 68
P3(d> =e (?) and Qg(B) =€ (7) (618)
instead. The following equations suffice to prove (7-6):
(C71+C70) s+ (CF° + C7?) 812 (0072 06’4) s& =0. (6.19)

When 49|c, there is no Q(B) term. By adding # from (6.4), Arg(d — d.; () is a non-zero
constant for r = d =1,2,5,6 (mod 7), which shows 57(«@2 =0 for ¢ =1,2,3 and proves .
When r = d = 3,4 (mod 7), note that P;(d) = (—1)D/sin(Z2) has

1, (=1,3, a=5 (mod 7); or { =2, a =2 (mod 7);
sgnPl(d)_{ -1, ¢=1,3, a=2(mod 7); or { =2, a=5 (mod 7).

By
27 : 3
04 L 26 s1n( ) 006 042 s1n(7) 002 L 64 s1n(7) —0
( 7 + 7 ) 1n(277r) ( )8111(37”)_'_( 7 + 7 )Sln(%) )

we finish the proof of when 49|c.

When 7|, from Condition (6.8 for the 7n + 4 case, we need to add £% to Arg(Q — P;/)
when A¢ = +1 (mod 7) and add 26 to Arg(d; — dj1q;¢) for 1 < j < 5. (One may also begin
from Condition [6.3] for the 7n + 5 case.)

We get the following condition.

Condition 6.9. For the Tn + 6 case, we have the following conditions on Arg(Q) — P;{)
when Al = £1 (mod 7) with tables for Arg;(d, — dy; ).

e/=1(mod7),=1. A-1=7T+1, Arg(Q%P;l):—%;
d=1(mod7) |d — do — d3 — dy — ds — d¢ — dy
Arg(d, = d,;1) " S 7
Arg(d -d2)| - om Tf o ouw Tu 7
rg(dy — dvi3)| % 2 —2 2 —: 0
e /=2(mod7),=4. A-3=T7TT—-1, Arg(Q — P;3) ==
d=2mod7) |d — do — d3 — dy — dy — dg — d;
Arg(d, — d;1) | & 7 7 7 i 7
Arg(d, — d,;2) Z : 2 : Z 0
SRR N S T S
e /=3(mod7), =5 A-2=TT-1, Arg(Q — P;2) = &;
ed=4(mod7), =2 A-2=TT+1, Arg(Q — P;2) = —1,;
e /=5(mod7), =3 A-3=T7T+1, Arg(Q—>P3) i
e =6 (mod7),3=6.A-1=T7T—1, Arg(Q — P;1) = 2.

The following graphs for ¢ = 1, 2,3 (mod 7) show the relative arguments of corresponding
styles in Condition In each graph, if d,, and d, are not shown, then P(d,) = P(d,) are
both the remaining non-labeled point.
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d=3mod7) |dy — do — d3g — dy — dy — d¢ — di
Arg(d, — d,; 1) 4 0 —2 0 - 0
Arg(d, — d,;2) -3 o z = - 3
Ag(d, s dg®)| 2 k2 &1
d=4(mod7) |dy — do — d3 — dy — dy — d¢ — di
Arg(d, — d,; 1) - 0 z 0 —= 0
Arg(dy — do; 2) 2 L 1 L 3 -1
SO | R S B SR S
d=5mod7) |dy — do — d3g — dy — dy — d¢ — dy
Arg(d, — dy; 1) —3 —2 =3 —2 3 3
Arg(d, — dy;2) | —& 3 —% 3 -% 0
rpdoodid)| < ok 2 <h
=6 (mod7) |d — do — dyg — dy — ds — dg — di
Arg(d, — dy; 1) 3 2 -3 7 —% —%
Arg(d, — dy;2) i -5 L ~-L & 1
Arg(d, — d,;3) 2 : 3 2 2 0

/=1, points for V(1,7)
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/=2, points for V(1,7)

(=3, points for V(1,7)

dy

N
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2
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/=1, points for V(2,21) /=2, points for V(2,21) /=3, points for V(2,21)

3
AR el ) ﬁﬁ%\
B=2,
d
ds
Visualizing by the above graphs, is proved by the following trigonometric identities:
37r)

7 cos(7)
) " Sin(E) ﬁ>

377r)
sin(¥) = sin

cos( cos(

(03’4 + C?’G) sin(%) (—

VR /l\\ —

n

—
A=
==
S~—

|
[ Ne)
.,
=N
1\3/_\
<8
N—

|
Qo
<
5|2
- S
~[§|
N—
N———

NGIRL)
N— | ~—

sin()  sin(%)  sin(3E
0.6 4,2 21 cos(%F) 1 cos(%)
+ (C7” + C7%) sin(5F) ( sin(Z)  sin(%)  sin(¥)
0,2 6.4y < (3r COS(%”) cos(37”) B cos(27”) -
) (S0 + Sy - oy +V7) =

¢+ 02508) (57~ ) )

+(C7° + C7%) sin(%F)

w

+(C2? + C2*) sin(3r)

This proves (7-6) of Theorem
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