2025/06/15
In this note, we are going to define multiplier systems on any congruence subgroup of $\SL_2(\Z)$, and discuss the cusps as well as the Kloosterman sums defined for cusp pairs. We use the notation $q=e(z):=e^{2\pi i z}$. For simplicity, we write $I=\lp\begin{smallmatrix} 1&0\\0&1\end{smallmatrix}\rp$, $T=\lp\begin{smallmatrix} 1&1\\0&1 \end{smallmatrix}\rp$, and $S=\lp\begin{smallmatrix} 0&-1\\1&0 \end{smallmatrix}\rp$.
We use the following well-known notations for congruence subgroups: \[ \Gamma_0(N)=\lb\gamma\in \SL_2(\Z): \gamma\equiv \lp\begin{smallmatrix} * & * \\ 0 & * \end{smallmatrix}\rp\Mod{N}\rb, \] \[ \Gamma_1(N)=\lb\gamma\in \SL_2(\Z): \gamma\equiv \lp\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix}\rp \Mod{N}\rb, \] \[ \Gamma(N)=\lb\gamma\in \SL_2(\Z): \gamma\equiv I \Mod{N}\rb, \] \[ \Gamma_{\Theta}=\lb\gamma\in \SL_2(\Z): \gamma\equiv I \text{ or } S \Mod{2}\rb. \] The last one is called the theta group, which is used in theories like Jacobi theta series.
For $k\in \R$, we fix the argument for complex numbers: $(-\pi,\pi]$.
Definition 1. We say that $\nu:\Gamma\rightarrow \C^\times$ is a multiplier system of weight $k$ if
The weight of multiplier systems can be restricted to $[0,1)$, because a weight $k$ multiplier system is also of weight $k+2$, and its conjugation $\overline{\nu}$ is of weight $-k$. We also have the properties for $\gamma\in \Gamma$ and $n\in \Z$ such that $T^n\in \Gamma$: \[\nu(\gamma)\nu(\gamma^{-1})=1,\quad \nu(\gamma T^n)=\nu(\gamma) \nu(T)^n. \]
We want to define Kloosterman sums with multiplier systems in general. For a congruence subgroup $\Gamma$, let $\Gamma_{\mathfrak a}$ denote the stabilizer of cusp $\mathfrak a$ in $\Gamma$: \[\Gamma_{\mathfrak a}:=\lb \gamma\in \Gamma: \gamma \mathfrak a=\mathfrak a\rb. \] The first example is for the cusp $\infty$: let $h\in \Z_+$ be the smallest integer such that $T^b\in \Gamma$, then \[\Gamma_\infty = \langle T^h \rangle =\lb \pm \lp \begin{smallmatrix} 1 & hn \\ 0 & 1 \end{smallmatrix} \rp: n\in \Z\rb. \] We call $h$ the width of cusp $\infty$.
The stabilizer $\Gamma_{\infty}$ is the start point for us to talk about other cusps. Indeed, we restrict our discussion in congruence subgroup $\Gamma$ to ensure that $\infty$ is a cusp of $\Gamma$ (because $\exists N\in \Z_+$ s.t. $\Gamma(N)\subseteq \Gamma$). We use the so called "scaling matrix" to "move" conditions for another cusp to cusp $\infty$ to discuss. Specifically, we define the scaling matrix $\sigma_{\mathfrak a}$ to be any matrix in $\SL_2(\R)$ satisfying the following conditions: \[\sigma_{\mathfrak a}\infty =a\quad \text{and}\quad \sigma_{\mathfrak a}^{-1}\Gamma_{\mathfrak a}\sigma_{\mathfrak a}=\Gamma_{\infty}. \] We have the following important properties of scaling matrices:
Lemma 2. The expression \[\overline{\nu_{\ma\mb}(\gamma)}\, e\lp\frac{-\kappa_{\ma}a-\kappa_{\mb}d}{hc}\rp\] is well-defined under \[\gamma=\lp\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\rp \in \Gamma_{\infty}\setminus\sigma_{\ma}^{-1}\Gamma\sigma_{\mb}\mathrel{/}\Gamma_{\infty}.\]
With this lemma, we can define our general Kloosterman sums with multiplier system:
Definition 3. For $m,n\in \Z$ and cusps $\ma,\mb$ of $\Gamma$, if $c\in \R$ is a possible moduli (a possible "bottom-left entry") of matrices in $\sigma_{\ma}^{-1}\Gamma\sigma_{\mb}$, then we define \[S_{\ma\mb}(m,n,c,\nu):=\sum_{\gamma=\lp\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\rp \in \Gamma_{\infty}\setminus\sigma_{\ma}^{-1}\Gamma\sigma_{\mb}\mathrel{/}\Gamma_{\infty}} \overline{\nu_{\ma\mb}}(\gamma) e\lp \frac{m_{\ma}a+n_{\mb}d}{hc}\rp. \]
In the next note, we will see how this general Kloosterman sum arises from Poincaré series.